

OGP P2/11 Positioning data exchange format

Acknowledgements

Geomatics Committee

Photography used with permission courtesy of © BP Plc and © Stephan Gladieu/TOTAL

Disclaimer

Whilst every effort has been made to ensure the accuracy of the information contained in this publication, neither IOGP nor any of its Members past, present or future warrants its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or unforeseeable use made thereof, which liability is hereby excluded. Consequently, such use is at the recipient's own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The recipient is obliged to inform any subsequent recipient of such terms.

Copyright notice

The contents of these pages are © International Association of Oil & Gas Producers. Permission is given to reproduce this report in whole or in part provided (i) that the copyright of IOGP and (ii) the sources are acknowledged. All other rights are reserved. Any other use requires the prior written permission of IOGP.

These Terms and Conditions shall be governed by and construed in accordance with the laws of England and Wales. Disputes arising here from shall be exclusively subject to the jurisdiction of the courts of England and Wales.

OGP P2/11 Positioning data exchange format

Report No. 483-2 Version 1.1 April 2015

Version	Publication History	Date
1.0	First Publication	November 2012
1.1	First Revision	April 2015

Contents

1. E>	cecutive Summary	1
2. G	eneral Information	2
2.1.	Logical File Structure	2
2.2.	Record Identifiers	2
2.3.	Data Types used in the Format Definition	3
2.4.	Record Data Types [DATATYPEREF]	4
2.5.	Use of Relevant Header Records	5
2.6.	Redundant Information	6
2.7.	Record Extension through Additional Fields	6
2.8.	Record Examples	7
2.9.	File Common Header	7
2.10). Comment Records	7
3. Co	ommon Header: File Identification Record	8
4. Co	ommon Header: Survey Summary	9
5. C	ommon Header: Reference System Definitions	11
5.1.	Unit Reference Systems Definition	11
5.2.	Time Reference Systems Definition	15
5.3.	Coordinate Reference Systems Definition	16
6. C	ommon Header: Survey Configuration Data	30
6.1.	General Survey Configuration Information	30
6.2.	Production System Information	30
6.3.	Receiver Information	34
6.4.	Definition of Positioning Objects	36
6.5.	Positioning Objects	37
7. C	omment Records	42
8. P2	2 Specific Format Information	43
8.1.	Definition of Objects	43
8.2.	Corrections	44
8.3.	Raw GNSS Data Recording	45

9. P2 Header	46
9.1. P2 Header: Line Definitions	46
9.2. P2 Header: Magnetic Variation Definitions	54
9.3. P2 Header: Observed Speed of Sound Definitions	55
9.4. P2 Header: Tidal Information	56
9.5. P2 Header: Vessel Definitions	59
9.6. P2 Header: Streamer Definitions	61
9.7. P2 Header: Gun Array Definitions	63
9.8. P2 Header: Survey Network Definitions	64
9.9. P2 Header: GNSS Definitions	73
10. P2 Data Records	77
10.1. General Event Data	77
10.2. Time-related Event Data	78
Appendix A: Tables of Fixed Values	84
A.1. Common Header Reference Codes	84
A.2. P2 Specific Reference Codes	86

List of Tables

1. Format Types	3
2. Format Data Types	3
3. Reserved Characters	4
4. DATATYPEREF Data Types	4
5. Contents of the Standard Record Extension Field Definition	6
6. FORMATREF Format Type Codes	8
7. Reserved UNITREF Codes	11
8. TIMEREF Codes	16
 Coordinate Reference System Types and associated Coordinate Field content 	17
10. CRSTYPEREF Codes	19
11. CSTYPEREF Codes and constraints in relation to CRS type	25
12. Production System Attribute Reference Numbers	31
12a. Event Attribute Record Field Extension Identifiers	33
13. Receiver Attribute Reference Numbers	35
14. OBJTYPEREF Codes	38
15. Object Attribute Reference Numbers	39
16. Preplot Position Record Field Extension Identifiers	47
16a. Speed of Sound Profile Field Extension Identifiers	56
16b. Tidal Correction Field Extension Identifiers	57
17. Shot Event Data Field Extension Identifiers	60
17a. Gun Array Field Extension Identifiers	63
18. OBSTYPEREF Codes	64
19. Observation Data Field Extension Identifiers	69
20. Position Data Field Extension Identifiers	72
21. Common Header Reference Codes	84
22. P2 Specific Fixed Values	86

P2/11 changes between version 1.0 (November 2012) and version 1.1 (April 2015)

Global change:

Version 1.1: References to 'CRS 1', 'CRS 2', 'CRS 3' changed to 'CRS A', 'CRS B', 'CRS C' respectively

Record Code	Record Description	Introduced in Version:	Revised in Version:
	Common Head	er	
OGP	File Identification Record	1.0	
НС,0,1,0	Project Name	1.0	
НС,0,2,0	Survey Description	1.0	
НС,0,3,0	Geographic Extent	1.0	
НС,0,4,0	Client	1.0	
НС,0,5,0	Geophysical Contractor	1.0	
НС,0,6,0	Positioning Contractor	1.0	
НС,0,7,0	Position Processing Contractor	1.0	
HC,1,0,0	Reference Systems Summary Information	1.0	
HC,1,1,0	Units of Measure Definition	1.0	
HC,1,1,1	Example Unit Conversion	1.0	
HC,1,2,0	Time Reference System	1.0	
HC,1,2,1	Example Time Conversions	1.0	
HC,1,3,0	Coordinate Reference System Implicit Identification	1.0	
HC,1,4,0	Coordinate Reference System Details (Explicit Definition)	1.0	
HC,1,4,1	Compound CRS Horizontal CRS Identification	1.0	1.1
HC,1,4,2	Compound CRS Vertical CRS Identification	1.0	1.1
НС,1,4,3	Base Geographical CRS Details	1.0	1.1
НС,1,4,4	Geodetic Datum Details	1.0	1.1
НС,1,4,5	Prime Meridian Details	1.0	
НС,1,4,6	Ellipsoid Details	1.0	
НС,1,4,7	Vertical Datum Details	1.0	
HC,1,4,8	Engineering Datum Details	1.0	
HC,1,5,0	Map Projection Details	1.0	
HC,1,5,1	Projection Method Details	1.0	

Record Code	Record Description	Introduced in Version:	Revised in Version:
	Common Header (cont.)	
HC,1,5,2	Projection Parameter Details	1.0	
HC,1,6,0	Coordinate System Details	1.0	
HC,1,6,1	Coordinate Axis Details	1.0	
HC,1,7,0	Coordinate Transformation Implicit Identification	1.0	
HC,1,8,0	Coordinate Transformation Name	1.0	
HC,1,8,1	Coordinate Transformation Details	1.0	
HC,1,8,2	Coordinate Transformation Method Details	1.0	
HC,1,8,3	Transformation Parameter File Details	1.0	
HC,1,8,4	Transformation Parameter Details	1.0	
HC,1,9,0	Example Point Conversion	1.0	
HC,2,0,0	General Survey Configuration Information	1.0	
HC,2,1,0	Production System Information	1.0	
HC,2,1,1	Production System Attributes	1.0	
HC,2,1,2	Auxiliary Channel Definition	1.0	1.1
HC,2,1,3	Attribute Record Type Definition	1.1	
HC,2,2,0	Receiver Type Definition	1.0	1.1
HC,2,2,1	Receiver Attributes (Land seismic only)	1.0	1.1
HC,2,3,0	Object Summary Information	1.0	1.1
HC,2,3,1	Positioning Object Attributes	1.0	
CC,1,0,0	Additional Information	1.0	
Record Code	Record Description	Introduced in Version:	Revised in Version:
	P2/11 Head	er	
H2,0,0,0	Acquisition Line Prefix	1.0	
H2,0,0,1	Acquisition Line Details	1.0	
H2,0,1,0	Preplot Record Type Definition	1.0	
H2,0,1,1	Preplot Record Type Attributes	1.1	
H2,0,2,0	Preplot Line Details	1.0	
H2,0,2,1	Preplot Line: Single Position Record	1.0	
H2,0,2,2	Preplot Line: Line Segment Record	1.0	
H2,0,2,3	Preplot Line: Arc Segment Record	1.0	
H2,0,2,4	Preplot Line: Spiral Segment Record	1.0	

Record Code	Record Description	Introduced in Version:	Revised in Version:
	P2/11 Header (cont.)	
H2,0,3,0	Magnetic Variation Description	1.0	
H2,0,3,1	Magnetic Variation — General Information	1.0	
H2,0,3,2	Magnetic variation — Data	1.0	
H2,0,4,0	Observed Speed of Sound – Definitions	1.0	1.1
H2,0,4,1	Observed Speed of Sound – Profile	1.0	
H2,0,5,0	Tidal Correction — Port Definition	1.0	
H2,0,5,1	Tidal Correction — Harmonic Data	1.0	
H2,0,5,2	Tidal Correction — Correction Data	1.0	
H2,1,0,0	Vessel Reference Point Definition	1.0	
H2,1,1,0	Steered Point Definition	1.0	
H2,1,1,1	Pivot Point Definition	1.0	
H2,1,1,2	Shot Reference Point Definition	1.0	
H2,1,1,3	Streamer Steering Definition	1.0	
H2,1,2,0	Vessel Time System Definition	1.0	
H2,1,3,0	Definition of General Event Data	1.0	
H2,2,0,0	Streamer Component Type Definitions	1.0	
H2,2,0,1	Receiver Record Type Definition	1.1	
H2,2,1,0	Streamer Layout Definition	1.0	
H2,2,2,0	Seismic Receiver Group Definitions	1.0	1.1
H2,3,0,0	Gun Array Definition	1.0	
H2,3,1,0	Individual Gun Definition	1.0	
H2,5,0,0	Observation Type Definition	1.0	
H2,5,1,0	Positioning System Definition	1.0	
H2,5,2,0	Node Definition (fixed locations)	1.0	
H2,5,3,0	Node Definition (non-fixed locations)	1.0	
H2,5,4,0	Observation Definition	1.0	
H2,5,4,1	Observation Definition — Additional Definition	1.0	
H2,5,4,2	Differential Observation — follow up record	1.0	
H2,5,4,3	Composite Range — follow up record	1.0	
H2,5,4,4	Instrument Correction	1.0	
H2,5,5,0	Position Observation Definition	1.0	

Record Code	Record Description	Introduced in Version:	Revised in Version:
	P2/11 Header (c	ont.)	
H2,6,0,0	GNSS System Description	1.0	
H2,6,1,0	Definition of Differential Reference Stations	1.0	
H2,6,2,0	GNSS Receiver Definition	1.0	
H2,6,5,0	GNSS Receiver Raw Data Recording Definition	1.0	
H2,6,5,1	GNSS Receiver Raw Data — Header	1.0	
H2,6,6,0	Correction Source Definition	1.0	
H2,6,6,1	Correction Source Raw Data Recording Definition	1.0	
H2,6,6,2	Correction Source Raw Data — Header	1.0	
	P2/11 Data Re	ord	
E2,1,0,0	General Event Data	1.0	
E2,1,0,1	Event Attribute Data	1.1	
T2,0,5,2	Tidal Correction — Realtime Correction Data	1.0	
T2,1,1,0	Auxiliary Seismic Channel Data	1.0	1.1
T2,1,1,2	Steered Streamer Reference Update	1.0	1.1
T2,3,3,0	Source Fired Event: Seismic Record Id and Local Offset	1.0	
T2,3,3,1	Source Fired Event and Gun Firing Data	1.0	
T2,5,4,0	Observation Data	1.0	
T2,5,4,1	Observation Parameters Update	1.0	
T2,5,4,2	Online Observation Data	1.0	
T2,5,5,0	Position Data	1.0	
T2,6,5,1	GNSS Receiver Raw Data	1.0	
T2,6,6,2	Correction Source Raw Data	1.0	
	Tables		
Table 1	Format Types	1.0	
Table 2	Format Data Types	1.0	
Table 3	Reserved Characters	1.0	
Table 4	DATATYPEREF Data Types	1.0	1.1
Table 5	Contents of the Standard Record Extension Field Definition	1.0	
Table 6	FORMATREF Format Type Codes	1.0	

Record Code	Record Description	Introduced in Version:	Revised in Version:
	Tables (cont.)	
Table 7	Reserved UNITREF Codes	1.0	
Table 8	TIMEREF Codes	1.0	
Table 9	Coordinate Reference System Types and associated Coordinate Field content	1.0	
Table 10	CRSTYPEREF Codes	1.0	
Table 11	CSTYPEREF Codes and constraints in relation to CRS type	1.0	
Table 12	Production System Attribute Reference Numbers	1.0	
Table 12a	Event Attribute Record Field Extension Identifiers	1.1	
Table 13	Receiver Attribute Reference Numbers	1.0	
Table 14	OBJTYPEREF Codes	1.0	1.1
Table 15	Object Attribute Reference Numbers	1.0	1.1
Table 16	Preplot Position Record Field Extension Identifiers	1.0	
Table 16a	Speed of Sound Profile Field Extension Identifiers	1.1	
Table 16b	Tidal Correction Field Extension Identifiers	1.1	
Table 17	Shot Event Data Field Extension Identifiers	1.0	
Table 17a	Gun Array Field Extension Identifiers	1.1	
Table 18	OBSTYPEREF Codes	1.0	1.1
Table 19	Observation Data Field Extension Identifiers	1.0	
Table 20	Position Data Field Extension Identifiers	1.0	
Table 21	Common Header Reference Codes	1.0	1.1
Table 22	P2 Specific Fixed Values	1.0	1.1

International Association of Oil & Gas Producers

1. Executive Summary

The P Formats for the exchange of positioning data are recommended by the International Association of Oil & Gas Producers (IOGP) Geomatics Committee for general use in the upstream oil and gas industry. They supersede earlier UKOOA P1, P2 and P6 formats. Parallel discussions with the Society of Exploration Geophysicists (SEG) covered deprecation of their SEG-P1 format and recognition of the revised OGP P1/11 format as its replacement.

These formats have been developed in response to ever evolving acquisition and processing technologies. This had made obsolete the previous UKOOA formats that were no longer able to handle modern acquisition systems, and this had led to a proliferation of variations of these formats. This resulted in a divergence from the original formats, and standards being no longer standards.

These formats have been developed on behalf of the IOGP Geomatics Committee by a Task Force consisting of representatives from operators, major survey and seismic contractors, major service providers, software vendors and other companies with a professional interest in these formats.

Any comments and suggestions for improvement are welcome and should be addressed to:

The Chairman, Geomatics Committee IOGP London

2. General Information

2.1. Logical File Structure

The data is stored in a series of variable length ASCII comma-separated data records, each terminated by a carriage return (Hex 0x0D) and/or a line feed (Hex 0x0A) character. Line termination shall be consistent throughout each file.

As the format is designed primarily for access by a computer program, there is no fixed limit on the length of each individual data record, and many record definitions allow multiple data items to be written into a single record. However, while it is recommended that systems make use of this facility to reduce file size where it is possible to do so, it is also recommended that records should not be written to excessive length but should instead be split across multiple records.

Although the format is primarily intended for computer access, it is also common for the file to be visually inspected, particularly the Common Header records. Thus it is recommended that, particularly for the Common Header block, systems writing the files make use of spaces to pad any repeated records to ensure the data is aligned in columns to facilitate readability.

Thus, if possible, common header records should be written as:

HC,1,5,2,Latitude of natural origin	,1,8801,	0,3,0	degree
HC,1,5,2,Longitude of natural origin	,1,8802,	-15,3,0	degree
HC,1,5,2,Scale factor at natural origin	,1,8805,0	.9996,4,	unity
HC,1,5,2,False easting	,1,8806,50	00000,1,	metre
HC,1,5,2,False northing	,1,8807,	0,1,	metre

However it should be noted, unless the field width is specifically stated in the record field definition, this padding of records for readability is a recommendation and not an absolute requirement.

Any physical storage medium can be used to store the format, by prior agreement between the parties involved in exchange of the data.

The file naming convention for a P1/11 file is *filename.p111*. For P2/11 and P6/11 files the file extensions are .p211 and .p611 respectively. The 'p' can be upper or lower case. Header records will precede data records. Files without mandatory header and data records are considered invalid.

Multiple seismic lines and positional data types per file are allowed, as long as all data and header records are consistent with each other.

2.2. Record Identifiers

The format defines that for most records the first comma-separated sections of each record contain the record identifying codes. The first section always contains two characters that are used to identify the general record type. The first character identifies the type of record. Two common record types are defined across all formats, an "H" record indicates a header record and a "C" record indicates a comment record. Other characters including "E", "M", "N", "P", "R", "S", "T", "A" and "X" are used for data records.

2nd Character	Format Type
C	Common across formats
1	Geophysical Position Data Exchange (P1/11)
2	Positioning Data Exchange (P2/11)
6	Seismic Bin Grid Data Exchange (P6/11)

The second character indicates the data format:

Table 1: Format Types

Thus "HC" is a header record common across formats ("Common Header") and T2 is a time data record from the P2/11 format.

All header records are identified by four comma-separated sections. Data records are identified by two, three or four sections. Where relevant, the remaining comma-separated sections contain numeric values which identify the record – thus record **HC,0,1,0** contains the project name whereas **E2,1,0,0** contains information about an event such as a shot point in the P2/11 format, and **R1** contains information about a receiver location in the P1/11 format.

2.3. Data Types used in the Format Definition

&9
8
9012E4&3.456E2

The following data types are used in this format definition document:

Table 2: Format Data Types

For some fields the data type is given as "Variant". This may take the form of any of the data types. The codes used to define variant data stored within the data records are defined in Table 4 below.

All individual text fields should contain only ASCII characters in the range 32 (Hex 0x20) to 126 (Hex 0x7E) and the following characters are additionally not to be used to ensure format rigidity:

Character	Description	ASCII Code	Usage in Format
,	Comma	44	Separates Fields
;	Semi Colon	59	Separates items in a Standard Record Extension Definition and Record Extension Fields
•	Colon	58	Separates items in Date and Time fields
&	Ampersand	38	Separates items in a Variant List

Table 3: Reserved Characters

Where use of reserved characters is unavoidable, for example to refer to a parameter name exactly as used by its source, an escape character sequence can be used.

Any character can be expressed as a \u followed by the 4 digit hexadecimal value written in uppercase. For example:

- , is escaped with \u002C
- ; is escaped with \u003B
- : is escaped with \u003A
- & is escaped with \u0026

An escape character which does not start with $\000$ is interpreted as the start of an UTF-8 character sequence.

2.4. Record Data Types [DATATYPEREF]

Version history			
Item revised	Version 1.0	Version 1.1	
Code 5		Boolean data format	

The following codes are used within the format to define the data format of an item which can be of variant type:

Code	Name	Format	Example	Comments
General				
1	Integer	ХХ	23453	
2	Floating Point Number	XX.XX	12.345	
3	Engineering Format Floating Point Number	XX.XXE±NN	1.23456E+03	
4	Text	ABC	Hello World	

5	Boolean	Х	1	1 if True, 0 if False (Data format added in version 1.1)
Time				
10	Relative Time	D:HH:MM:SS.SS	0:23:34:12.22	
11	Date and Time	YYYY:MM:DD:HH:MM:SS.SS	2010:04:20:23:34:12.22	
12	Julian Day and Time	YYYY:JDD:HH:MM:SS.SS	2010:134:23:34:12.22	
Note: Time can	be recorded to any number	of decimal places, as defin	ed by the data recorded	
Degree Represe	entation			
20	Degree Hemisphere	DDD.DDD H	34.442340 N	EPSG# 9116
21	Degree Minute	DDD MM.MMM	34 26.540400	EPSG# 9115
22	Degree Minute Hemisphere	DDD MM.MMM H	34 26.540400 N	EPSG#9118
23	Degree Minute Second	DDD MM SS.SSS	34 26 32.4240	EPSG#9107
24	Degree Minute Second Hemisphere	DDD MM SS.SSS H	34 26 32.4240 N	EPSG#9108
25	Hemisphere Degree	H DDD.DDDD	N 34.442340	EPSG#9117
26	Hemisphere Degree Minute	H DDD MM.MMMM	N 34 26.540400	EPSG#9119
27	Hemisphere Degree Minute Second	H DDD MM SS.SSSS	N 34 26 32.4240	EPSG#9120
28	Sexagesimal DM	DDD.MMMMMM	34.26540400	EPSG#9111
29	Sexagesimal DMS	DDD.MMSSSSSS	34.26324240	EPSG#9110
30	Sexagesimal DMS.S	DDDMMSS.SSSSS	342632.4240	EPSG#9121

Table 4: DATATYPEREF Data Types

When recording a floating point number, the number shall be written as defined in an external source or normally to the relevant precision as defined by the precision inherent in the value recorded. It is acceptable to remove trailing decimal zeros in the bulk data.

The degree representation codes are only used when listing geodetic parameters which should be quoted in the same format as originally provided from the source geodetic dataset. EPSG unit code 9122 "degree (supplier to define representation)" should be regarded as decimal degrees within the 'P' formats. All coordinates in degrees should be written as decimal degrees (EPSG unit code 9102, for example 34.4483444).

Unless a DATATYPEREF code is specifically listed for a variant data type, the DATATYPEREF code is referenced through the corresponding UNITREF code (see section 5.1).

2.5. Use of Relevant Header Records

Each file shall begin with the **OGP** file identification record and then records **HC,0,1,0** to **HC,0,7,0**. The sequence of the remainder of the survey header records is not crucial but they should follow the logical groupings indicated in this document.

2.6. Redundant Information

In a number of places the format requires redundant information to be recorded. The purpose of this is to allow integrity checks on the supplied data to take place. Redundant information should therefore not conflict with information supplied elsewhere in the format.

2.7. Record Extension through Additional Fields

In designing the format, the taskforce was aware that it would not be possible to define all the data values which may be required in the future. As such, the format has been designed to allow for maximum flexibility while retaining the core format structure.

To handle the case where additional data values may need to be defined alongside the core data values as part of a data record, the concept of "Record Extension Fields" is used. The Record Extension Field is a single field of the data record that can contain a number of extra data values, separated by semi-colons. Using a single field in this way ensures that the number of fields in a record is constant, which is important for the format integrity of those records that can repeat blocks of fields.

The data values recorded in the Record Extension Field block are defined in the relevant header record using the Record Extension Field Definition. Unlike the Record Extension Field block, this definition is split into multiple fields and is located at the end of the header record so that the variable number of fields does not cause a problem for any decoding process.

The first field in the Record Extension Field Definition defines the number of extension field items. Each subsequent field defines the data that is to be logged in the data record using a "Standard Record Extension Field Definition". The Standard Record Extension Field Definition consists of 4 items separated by semicolons, as follows:

ltem	Description	Comments
First	Record Extension Identifier	Defined by format (see Tables 12a, 16, 17, 17a, 19, 20), otherwise defined by user (100 onwards)
Second	Conditional Additional Parameter	Required for some defined record extensions (eg Table 17)
Third	Extension Description	The name of the data value
Fourth	Data Units Code	The UNITREF code for the units of measure data value

Table 5: Contents of the Standard Record Extension Field Definition

• The Record Extension Identifier is a unique code within a data type, which identifies the data value.

This identifier is either defined in a table in this format definition document, or it is a user defined value, in which case it is numbered from 100 onwards. Various tables within this document (eg Table 12a, 16, 17, 17a, 19, 20) define the identifier for commonly used record extensions to ensure that these values have the same code regardless of the system generating the data, to drive standardisation.

- A Conditional Additional Parameter is required for some Record Extension definitions to provide additional attributes about the value. For instance, when recording the water depth at a position the additional parameter specifies the Vertical Reference System to which the water depth is referenced. This additional parameter can be either an integer or an integer list, as required. The conditionality for when it is mandatory is defined in the table relevant to the data type. In other circumstances this subfield shall be unpopulated.
- The Extension Description is a text block, which allows for the definition of the name of the data value. For extensions defined within this format document (with an identifier of less than 100), the description should contain the required description but will not be limited to it.

So for instance, where the description is stated in the format document as "Water Depth", a description in the file of "Vessel Water Depth" or "Master Vessel Processed Water Depth" etc., as appropriate, is acceptable.

• The Data Units Code specifies, where relevant, the units of measure of the data value.

As an example, consider the logging of a GPS position into the P2/11 format. The GPS receiver issues the position at a set time and this is the primary recorded data written into the data record. However, the receiver will also issue a number of additional attributes such as PDOP, HDOP, Age of Correction, etc depending on the type of receiver and the output message read. These additional attributes are thus defined and written as record extension fields.

In the header, the fields are defined as shown below (colour coding shown for clarification purposes only):

H2,5,4,0,1,1000,...,3,5;;PDOP;4,6;;HDOP;4,9;;Age of Correction;6

The first field in the Record Extension Field Definition defines the number of record extension fields (3 in this case). Then the record extension fields are defined. Thus in the first example above 5;; PDOP; 4, we have extension identifier "5" with no conditional parameter, description "PDOP" and unit code "4" which links to a definition in the units of measure records, in this case defining the value as unitless with floating point formatting.

In the data record, the record extension field list will then be written as:

T2,5,4,0,10,...,5.2;4.5;1.2

2.8. Record Examples

To aid with the clarity of the examples contained in this document, the space characters contained in a "Description" field are where necessary replaced by an ellipsis. (The record may also be wrapped and indented on the next line).

Thus

HC,0,1,0,Project Name...,Test,TEST01,2012:03:19,2012:03:22

Should actually be implemented as

HC,0,1,0,Project Name

,Test,TEST01,2012:03:19,2012:03:22

2.9. File Common Header

Common Header records are common across all Px/11 formats. The Common Header consists of the following records:

- File Identification Record
- Survey Summary
- Reference Systems Definition
- Survey Configuration

These are described in sections 3 through 6.

2.10. Comment Records

The Comment record is also common to all Px/11 formats. Comment records may be inserted into both header and data parts of the file. The Comment record is described in section 7.

3. Common Header: File Identification Record

OGP: File Identification Record

Field	Description	Data Type	Reference Code	Comments
1	"OGP"	Text		
2	Contents Description	Text		e.g. "OGP P1"
3	Format Code	Integer List	FORMATREF	See table 6 below
4	Format Version Number	Float		Format version (this document) 1.1
5	File Issue Number	Integer		
6	Date File Written	Date		YYYY:MM:DD
7	Time File Written	Time		HH:MM:SS
8	Name of File	Text		
9	Prepared By	Text		

Note: the date and time of the file write is intended as a general reference. It should ideally be set to UTC, but can be different if this is not possible, in which case a comment record detailing the time reference used should follow this record.

Format Type Codes (FORMATREF)

Format Code	Format type
0	Common Header Only
1	P1/11
2	P2/11
6	P6/11

Table 6: FORMATREF Format Type Codes

Example File Identification Records:

OGP,OGP P1,1,1.1,1,2015:02:12,21:43:01,SPEC201001.P111,OilFinder Ltd OGP,OGP P6,6,1.1,1,2015:02:12,21:53:01,1001.P611,OilFinder Ltd

4. Common Header: Survey Summary

HC,0,1,0: Project Name

Field	Description	Data Type	Comments
5	"Project Name"	Description	
6	Project identifier	Text	
7	Project name	Text	
8	Start Date of Project	Date	
9	End Date of Project	Date	This field can be left blank if it is not known at the time of file production.

Example

HC,0,1,0,Project Name...,Test Dataset,TEST01,2010:08:01,2010:09:04

HC,0,2,0: Survey Description

Field	Description	Data Type	Comments
5	"Survey Description"	Description	
6	Survey General Type	Text	e.g. 3D Towed Streamer
7	Survey Layout Description	Text	e.g 10 streamer 2 source
8	Survey Location	Text	Free text
9	Numeric Country Codes	Integer List	ISO 3166-1 Numeric Codes
10	Text Country Codes	L J3 Text List	ISO 3166-1 Alpha-3 Codes

Example

HC,0,2,0,Survey Description...,3D Towed Streamer,1 Vessel 2 Source 10 Streamer,North Sea,826,GBR

HC,0,3,0: Geographic Extent

Field	Description	Data Type	Comments
5	"Geographic Extent"	Description	
6	Bounding Box Westernmost Longitude	Float	-180<=x<=+180 degrees. In general W_lon <= E_lon but if area crosses the 180° meridian the value of W_lon will be greater than the value of E_lon.
7	Bounding Box Easternmost Longitude	Float	-180<=x<=+180 degrees. In general E_lon >= W_lon but if area crosses the 180° meridian the value of E_lon will be less than the value of W_lon.
8	Bounding Box Southernmost Latitude	Float	-90<=x<=+90 degrees, S_lat <= N_lat
9	Bounding Box Northernmost Latitude	Float	-90<=x<=+90 degrees, N_lat >= S_lat

This record details the approximate geographic extent for the data contained within the file through a "north up" rectangle. It is intended to aid any application searching for data by location. The positions need not be given to any high accuracy, two decimal places of a degree should suffice, and this coarseness means that no geodetic CRS needs be defined, although WGS 84 is assumed.

Example

HC,0,3,0,Geographic Extent...,36.77,36.98,-16.26,-16.04

HC,0,4,0: Client

Field	Description	Data Type	Comments
5	"Client"	Description	
6	Client Company Name	Text	

Example

HC,0,4,0,Client...,Wight Oil Limited

HC,0,5,0: Geophysical Contractor

Field	Description	Data Type	Comments
5	"Geophysical Contractor"	Description	
6	Geophysical Contractor Company Name	Text	

Example

HC,0,5,0,Geophysical Contractor...,OilFinder LLC

HC,0,6,0: Positioning Contractor

Field	Description	Data Type	Comments
5	"Positioning Contractor"	Description	
6	Positioning Contractor Company Name	Text	

This record can be repeated if multiple positioning contractors are in use.

Example

```
HC,0,6,0,Positioning Contractor...,TruePos Inc
```

HC,0,7,0: Position Processing Contractor

Field	Description	Data Type	Comments
5	"Position Processing Contractor"	Description	
6	Position Processing Contractor Company Name	Text	

This record can be repeated if multiple position processing contractors are in use.

Example

HC,0,7,0,Position Processing Contractor...,Navigation Positioning Ltd

5. Common Header: Reference System Definitions

Three basic reference systems are defined in this part of the Common Header:

- 1) Unit reference systems (section 5.1)
- 2) Time reference systems (section 5.2)
- 3) Coordinate reference systems including transformations between CRSs (section 5.3)

The number of reference systems and transformations used in the file is provided in the following header record:

HC,1,0,0: Reference Systems Summary Information

Field	Description	Data Type	Comments
5	"Reference Systems Summary"	Description	
6	Number of Units of Measure defined	Integer	
7	Number of Time Reference Systems defined	Integer	
8	Number of Coordinate Reference Systems defined	Integer	
9	Number of Coordinate Transformations defined	Integer	

Example

HC,1,0,0,Reference Systems Summary

,5,1,4,2

5.1. Unit Reference Systems Definition

This section of the Common Header allows for the definition of all units of measure used within the file, along with the data type used for this unit. For each unit of measure the conversion factors to convert that unit to the base unit for that measurement type shall be given. Additionally, the information source from which the unit information has been derived should be specified.

Each unit of measure is defined with a unique UNITREF code, which is then used in the remainder of the header to reference data recorded with that unit. The following UNITREF codes are reserved, user defined UNITREF codes should start from 5 onwards.

UNITREF	Units	Quantity Type	Format Code	Comments
1	Metres	Length	Floating Point	Base unit for length
2	Radians	Angle	Floating Point	Base unit for angles other than degree representations (including degree itself)
3	Degrees	Angle	Floating Point	Base unit for degree representations
4	Unity	Scale	Floating Point	Base unit for scale

Table 7: Reserved UNITREF Codes

It is important to note that the unit of measure definition also defines the format code (see the DATATYPEREF Table 4 earlier in this document) used to record the data, as well as the units of measure of that data. Thus you may have a "Degrees" unit of measure repeated twice with different UNITREF code, one formatted as decimal degrees, and the other formatted using a "Degree Minute Second Hemisphere" representation. In this case, both degrees units of measure will be defined relative to the base SI unit of Radians. The angular base unit is radians.

For raw data logging in a P2/11 file, the data should be logged in the same units as it is received from the original measuring system.

Field	Description	Data Type	Reference Code	Comments
5	"Unit of Measure"	Description		
6	Unit Number	Integer	UNITREF	1 onwards (see above)
7	Unit Name	Text		
8	Quantity Type Name	Text		e.g. "length"
9	Format Reference	Integer	DATATYPEREF	See Table 4
10	Base Unit Number	Integer	UNITREF	Blank if this unit is the base unit
11	Conversion Factor A	Float		Blank if this unit is the base unit
12	Conversion Factor B	Float		Blank if this unit is the base unit
13	Conversion Factor C	Float		Blank if this unit is the base unit
14	Conversion Factor D	Float		Blank if this unit is the base unit
15	Description	Text		
16	EPSG Unit Code	Integer		Blank if not available
17	Source Description	Text		Defines the data source which provided details of this unit
18	Source Version Details	Text		Defines the version of the data source which provided details of this unit
19	Source Unit Code	Variant		Defines the unit code used by the data source which provided details of this unit. This item is written in the units used to define unit codes by the data source.

HC,1,1,0: Units of Measure Definition

Note: To convert a unit X to the base unit Y Y = (A + BX) / (C + DX)

HC,1,1,1: Example Unit Conversion

Field	Description	Data Type	Reference Code	Comments
5	"Example Unit Conversion"	Description		
6	Example number	Integer		
7	Unit Number	Integer	UNITREF	
8	Value	Variant		Format as defined for UNITREF

Fields 7 onwards can be repeated as required, or the record repeated. For each example unit conversion, at least two converted values should be listed.

Example Units of Measure Definition

9001	9101	9102	9201	S	S	m3	cu_in	Ъa	bfPin2	S	шs	9104	9202	mPs	М	degC	Euc	ppk	
,7.6,	,7.6,	,7.6,	,7.6,	ionary, 2.2,	ionary, 2.2,	ionary, 2.2,	ionary, 2.2,	ionary, 2.2,	ionary, 2.2, 1	ionary, 2.2,	ionary, 2.2,	,7.6,	,7.6,	ionary, 2.2,	ionary, 2.2,	ionary, 2.2,	ionary, 2.2,	ionary, 2.2,	
Dataset	Dataset	Dataset	Dataset	OM Dict.	OM Dict.	OM Dict.	OM Dict.	OM Dict.	OM Dicti	OM Dict.	OM Dict.	ataset	ataset	OM Dict.	OM Dict.	OM Dict.	OM Dict.	OM Dict.	
1, EPSG	1, EPSG	2, EPSG	1, EPSG	, POSC U	, POSC U	, POSC U	, POSC U	, POSC U	, POSC U	, POSC U	, POSC U	4, EPSG D	2,EPSG D	, POSC U	, POSC U	, POSC U	, POSC U	, POSC U	
ngth, 900	nit, 910	ngle, 910	cies, 920	cime,	cime,	Lume,	Lume,	sure,	nit,	cime,	cond,	gree, 910	Lion, 920	beed,	mit,	cale,	alue,	cion,	
t of ler	easure 1	plane an	ss entit	nit of 1	nit of 1	tric vo.	ubic vo	of pres:	essure ı	nit of 1	of a se(of a deg	per mil.	it of s _l	e base ı	ature so	base va	ss fract	
oase uni	ngular m	sure of	c unitle	l base u	l base u	me	US C	neasure	rial pre	l base u	1/1000	1/3600	parts	rived un	nperatur	Temper	sionless	ensionle	
, SI b	, SI ar	0, Meas	, For	, SI	, SI		0,	, SI n	,0, Impe	, SI	0,	0,	0,	, SI der	, SI ten	0,	, Dimens	0, Dim∈	
		180,					1,-		Ч		1,-	648000,1	000000			1,-		1,1	
•	•	592654,					016387,		. 757 ,		0.001,	592654,	1,1			1,	•	0.001,	
		0,3.1415					0,0.0000		0, 6894.		0,	0,3.1415	0,			5,		0,	
																:73.1			
			_		~	~	~	~		~	~	~	~	~	~		~	~	
2,	2	2, 2	2,	12, ,	11, ,	2, ,	2, 7,	2, ,	2, 9,	2, ,	2,11,	2, 2,	2, 4,	2, ,	2, ,	2,16,2	2, ,	2,18,	
length, 2,	angle, 2,	angle, 2, 2	scale, 2,	time,12,	time,11, ,	volume, 2, ,	volume, 2, 7,	ber area, 2, ,	ber area, 2, 9,	time, 2, ,	time, 2,11,	angle, 2, 2,	Eference, 2, 4,	relocity, 2, ,	berature, 2, ,	berature, 2,16,2	sionless, 2, ,	itration, 2,18,	
length, 2,	angle, 2,	angle, 2, 2	scale, 2,	time,12, ,	time,11, ,	volume, 2, ,	volume, 2, 7,	force per area, 2, ,	force per area, 2, 9,	time, 2, ,	time, 2,11,	angle, 2, 2,	cale difference, 2, 4,	velocity, 2, ,	nic temperature, 2, ,	nic temperature, 2,16,2	dimensionless, 2, ,	concentration, 2,18,	
length, 2,	angle, 2,	angle, 2, 2	scale, 2,	time,12, ,	time,11, ,	volume, 2, ,	volume, 2, 7,	force per area, 2, ,	force per area, 2, 9,	time, 2, ,	time, 2,11,	angle, 2, 2,	scale difference, 2, 4,	velocity, 2, ,	rmodynamic temperature, 2, ,	rmodynamic temperature, 2,16,2	dimensionless, 2, ,	volumic concentration, 2,18,	
tre, length, 2,	ian, angle, 2,	ree, angle, 2, 2	ity, scale, 2, ,	ond, time,12, ,	ond, time,11, ,	tre, volume, 2, ,	nch, volume, 2, 7,	cal, force per area, 2, ,	nch, force per area, 2, 9,	ond, time, 2, ,	ond, time, 2,11,	ond, angle, 2, 2,	ion, scale difference, 2, 4,	ond, velocity, 2, ,	vin, thermodynamic temperature, 2, ,	ius, thermodynamic temperature, 2,16,2	lid, dimensionless, 2, ,	and, volumic concentration, 2,18,	
metre, length, 2,	radian, angle, 2,	degree, angle, 2, 2	unity, scale, 2,	second, time,12,	second, time,11,	ubic metre, volume, 2, ,	cubic inch, volume, 2, 7,	pascal, force per area, 2, ,	quare inch, force per area, 2, 9,	second, time, 2, ,	illisecond, time, 2,11,	arc-second, angle, 2, 2,	er million, scale difference, 2, 4,	res/second, velocity, 2, ,	kelvin, thermodynamic temperature, 2, ,	es Celsius, thermodynamic temperature, 2,16,2	euclid, dimensionless, 2, ,	rthousand, volumic concentration, 2,18,	
metre, length, 2,	radian, angle, 2,	degree, angle, 2, 2	unity, scale, 2,	second, time, 12,	second, time,11, ,	cubic metre, volume, 2, ,	cubic inch, volume, 2, 7,	pascal, force per area, 2, ,	force/square inch, force per area, 2, 9,	second, time, 2, ,	millisecond, time, 2,11,	arc-second, angle, 2, 2,	parts per million, scale difference, 2, 4,	metres/second, velocity, 2, ,	kelvin, thermodynamic temperature, 2, ,	degrees Celsius, thermodynamic temperature, 2,16,2	euclid, dimensionless, 2, ,	parts per thousand, volumic concentration, 2,18,	
metre, length, 2,	, radian, angle, 2,	, degree, angle, 2, 2	, unity, scale, 2,	, time,12,	, time,11,	, volume, 2, ,	, cubic inch, volume, 2, 7,	, force per area, 2, ,	, pounds force/square inch, force per area, 2, 9,	, time, 2, ,	, millisecond, time, 2,11,	, arc-second, angle, 2, 2,	, parts per million, scale difference, 2, 4,	, metres/second, velocity, 2, ,	, kelvin, thermodynamic temperature, 2,	, degrees Celsius, thermodynamic temperature, 2,16,2	, euclid, dimensionless, 2, ,	, parts per thousand, volumic concentration, 2,18,	
e, 1, metre, length, 2,	e, 2, radian, angle, 2,	e, 3, degree, angle, 2, 2	e, 4, unity, scale, 2,	e, 5, second, time,12, ,	e, 6, second, time,11, ,	e, 7, cubic metre, volume, 2, ,	e, 8, cubic inch, volume, 2, 7,	e, 9, pascal, force per area, 2, ,	e, 10, pounds force/square inch, force per area, 2, 9,	e,11, second, time, 2, ,	e, 12, millisecond, time, 2,11,	e,13, arc-second, angle, 2, 2,	e,14, parts per million, scale difference, 2, 4,	e, 15, metres/second, velocity, 2, ,	e, 16, kelvin, thermodynamic temperature, 2, ,	e, 17, degrees Celsius, thermodynamic temperature, 2,16,2	e, 18, euclid, dimensionless, 2, ,	e,19, parts per thousand, volumic concentration, 2,18,	
Measure, 1, metre, length, 2,	Measure, 2, radian, angle, 2,	Measure, 3, degree, angle, 2, 2	Measure… , 4, unity, scale, 2, ,	Measure, 5, second, time, 12,	Measure, 6, second, time,11, ,	Measure, 7, cubic metre, volume, 2, ,	Measure, 8, cubic inch, volume, 2, 7,	Measure, 9, pascal, force per area, 2, ,	Measure, 10, pounds force/square inch, force per area, 2, 9,	Measure, 11, second, time, 2, ,	Measure, 12, millisecond, 2,11,	Measure… ,13, arc-second, angle, 2, 2,	Measure, 14, parts per million, scale difference, 2, 4,	Measure, 15, metres/second, velocity, 2, ,	Measure, 16, kelvin, thermodynamic temperature, 2, ,	Measure, 17, degrees Celsius, thermodynamic temperature, 2,16,2	Measure, 18, euclid, dimensionless, 2, ,	Measure, 19, parts per thousand, volumic concentration, 2,18,	
nit of Measure… , 1, metre, length, 2,	nit of Measure, 2, radian, angle, 2,	nit of Measure… , 3, degree, angle, 2, 2	nit of Measure, 4, unity, scale, 2, ,	lit of Measure , 5, second, time, 12, ,	lit of Measure, 6, second, time,11, ,	lit of Measure, 7, cubic metre, volume, 2, ,	lit of Measure, 8, cubic inch, volume, 2, 7,	nit of Measure , 9, pascal, force per area, 2, ,	nit of Measure… ,10, pounds force/square inch, force per area, 2, 9,	nit of Measure ,11, second, time, 2, ,	nit of Measure ,12, millisecond, time, 2,11,	nit of Measure, 13, arc-second, angle, 2, 2,	nit of Measure ,14, parts per million, scale difference, 2, 4,	nit of Measure ,15, metres/second, velocity, 2, ,	nit of Measure ,16, kelvin, thermodynamic temperature, 2, ,	nit of Measure, 17, degrees Celsius, thermodynamic temperature, 2,16,2	nit of Measure ,18, euclid, dimensionless, 2, ,	nit of Measure, 19, parts per thousand, volumic concentration, 2,18,	
,1,0,Unit of Measure, 1, metre, length, 2,	,1,0,Unit of Measure, 2, radian, radian, angle, 2,	,1,0,Unit of Measure, 3, degree, angle, 2, 2	,1,0,Unit of Measure, 4, unity, scale, 2,	,1,0,Unit of Measure, 5, second, time,12, ,	,1,0,Unit of Measure, 6, second, time,11, ,	,1,0,Unit of Measure, 7, cubic metre, volume, 2, ,	,1,0,Unit of Measure, 8, cubic inch, volume, 2, 7,	,1,0,Unit of Measure, 9, pascal, force per area, 2, ,	,1,0,Unit of Measure, 10, pounds force/square inch, force per area, 2, 9,	,1,0,Unit of Measure, 11, second, time, 2, ,	,1,0,Unit of Measure, 12, millisecond, time, 2,11,	,1,0,Unit of Measure,13, arc-second, angle, 2, 2,	,1,0,Unit of Measure,14, parts per million, scale difference, 2, 4,	,1,0,Unit of Measure,15, metres/second, velocity, 2, ,	,1,0,Unit of Measure,16, kelvin,thermodynamic temperature, 2, ,	,1,0,Unit of Measure,17, degrees Celsius,thermodynamic temperature, 2,16,2	,1,0,Unit of Measure, 18, euclid, dimensionless, 2, ,	,1,0,Unit of Measure,19, parts per thousand, volumic concentration, 2,18,	

Note that UNITREF 14 (parts per million) above is defined as a unit (quantity) type of scale difference, but referred to code EPSG::9202 as source. In the context in which scale difference in parts per million (the dS parameter in a 7-parameter transformation) is used in the Px/11 file it is a coordinate operation parameter. In the EPSG Dataset all units have a unit (or quantity) type of either length, angle, scale or time. Parts per million (ppm) in the EPSG dataset is assigned to the 'scale' unit (quantity) type. The unit (quantity) type is there as a check on having the correct SI base unit (length = meter, angle = radian, scale = unity, time = second). For parts per million, the unit type is scale so the factors B/C (fields 12 & 13) relate ppm to unity.

Example Unit Conversion

HC,1,1,1,Example Unit Conversion

,1,2,1.0,3,57.295779513

This example is unit conversion example number 1, with unit code 2 (radian) having a value of 1.0 and unit code 3 (degree) having a value of 57.295779513, where both units are as defined in the example above as floating point numbers.

5.2. Time Reference Systems Definition

The format allows for data to be logged in a number of different time systems. The ability to record data in multiple time systems is intended primarily for the P2/11 format, where timestamps received from a measuring system should be logged in their original time domain.

Each Time Reference System (TRS) is defined with a unique TRSREF code, which is then used in the remainder of the header to reference data recorded with timing data in that reference system.

By linking to a Units of Measure code, each Time Reference System also defines the format of the time stamp written into the data records. Thus you may have multiple Time Reference Systems defined, each representing the same base time reference (e.g. UTC) but with different Units of Measure codes with different formatting codes, such as Date and Time (DATATYPEREF #11) and Julian Day and Time (DATATYPEREF #12)

Field	Description	Data Type	Reference Code	Comments
5	"Time Reference System"	Description		
6	TRS Number	Integer	TRSREF	
7	Time Reference Code	Integer	TIMEREF	See Table 8
8	Time Reference Offset from UTC	Float		In Seconds, a positive offset is ahead of the base time
9	Reference Description	Text		
10	Relative Flag	Integer		0 = time is absolute 1 = time is relative to the reference date
11	Reference Date	Date		YYYY:MM:DD
12	Unit Code	Integer	UNITREF	

HC,1,2,0: Time Reference System

HC,1,2,1: Example Time Conversions

Field	Description	Data Type	Reference Code	Comments
5	"Example Time Conversion"	Description		
6	Example Number	Integer		
7	TRS Number	Integer	TRSREF	
8	Time Value	Variant		Format as defined for TRS See Appendix A

Fields 7 onwards can be repeated as required, or the record repeated. For each example time conversion, at least two converted values should be listed.

TIMEREF: Time Reference Codes

Code	Name
1	UTC (formerly GMT)
2	GPS Time
3	Glonass Time
4	Galileo System Time (GST)

Table 8: TIMEREF Codes

Example Time Reference System Definitions Block

```
HC,1,2,0,Time Reference System
HC,1,2,0,Time Reference System
HC,1,2,1,Example Time Conversion
HC,1,2,1,Example Time Conversion
```

,1,1, 0.0,UTC,0, ,6
,2,2,15.0,GPS,1,1980:01:06,5
,1,1,2011:02:04:13:19:59.0
,1,2,980860814.0

5.3. Coordinate Reference Systems Definition

To ensure that coordinates given in the data records are unambiguous in their description of position, this format requires specification of their coordinate reference system. The OGP 'P' formats Common Header allows any Coordinate Reference System (CRS) or coordinate transformation in use in the oil and gas industry to be defined. The format makes reference to the EPSG Geodetic Parameter Dataset ("EPSG Dataset") during the definition of the CRS and coordinate transformation parameters. However, this should not preclude the full definition of all the coordinate reference system parameters in the header, simply referencing the EPSG codes is not acceptable. To ensure that coordinates given in the data records are unambiguous in their description of position, this format requires specification of geodetic parameters giving the full and complete definition of the coordinate reference systems (CRSs) in use during the survey, including transformations between different coordinate reference systems.

In general, a CRS or a coordinate transformation may be described in two ways:

- Implicit identification through citation of an EPSG code. The defining attributes and their values may then be obtained from the EPSG Dataset; or
- Explicit statement of all necessary defining attributes and their values.

In this format implicit identification alone is not acceptable. It is required by this format that header records always contain the full defining parameters for all CRSs and any transformations used ("explicit definition"), and also includes implicit identification whenever the CRS or coordinate transformation data is in the EPSG Dataset.

To ensure that the format handles cases where the EPSG Dataset cannot be referenced in the definition of the geodetic parameters, the format defines internal codes for CRS Number (CRSREF) and Coordinate Transformation Number (COTRANSREF). If the EPSG Dataset is referenced then these internal codes are cross referenced to the EPSG code in the header. The internal codes are always the values used within the data records.

In addition to the CRSs to which the coordinates in the file are referenced, the full set of survey geodetic information of earlier CRSs should be described in the Common Header to ensure that any transformation back to the earlier CRS or a common coordinate reference system (such as WGS 84) uses the correct parameters.

Latitude and longitude in the data records shall be given in decimal degrees, but when parameters

in transformation and conversion definitions they should be written in the same unit and to the same resolution as supplied by the information source. Thus EPSG unit code 9122 "degree (supplier to define representation)" should be regarded as decimal degrees within the 'P' formats.

The format follows the structure of the EPSG Geodetic Parameter Dataset and requires the use of the following parameter codes from that dataset.

- Coordinate Operation Method Codes for Map Projections and Transformations.
- Coordinate Operation Parameter Codes for Map Projections and Transformations.
- Coordinate Axis Codes

Any additional codes are provided for cross reference and need only be included if the geodetic parameters are directly extracted from an EPSG Dataset.

When writing explicit defining attributes and their values, if the application is referencing values from an EPSG-compliant database, the parameter names, values and units must be exactly as given in that database.

In the EPSG Dataset, most coordinate transformations utilise the 2 dimensional variant of a coordinate reference system, whereas a GNSS system will provide positions in the 3 dimensional variant of the coordinate reference system. Thus, to ensure the EPSG structure is followed, it will be necessary to include both these coordinate reference systems and specify the correct 3D to 2D conversion.

CRS Type	Coordinate Field 1	Coordinate Field 2	Coordinate Field 3
Projected ¹	Easting or northing ²	Northing or easting ²	(not used, leave blank)
Geographic 2D	Latitude	Longitude	(not used, leave blank)
Geographic 3D	Latitude	Longitude	Ellipsoidal height
Geocentric	Geocentric X	Geocentric Y	Geocentric Z
Vertical	(not used, leave blank)	(not used, leave blank)	Gravity-related height or depth ³
Engineering 1D ⁴	Distance along X axis	(not used, leave blank)	(not used, leave blank)
Engineering 2D ^{4,5}	Distance along X axis	Distance along Y axis	(not used, leave blank)
Engineering 3D ⁴	Distance along X axis	Distance along Y axis	Distance along Z axis
Compound ⁶	According to horizontal CRS	According to horizontal CRS	According to vertical CRS

The table below defines the coordinate fields for each CRS type:

Table 9: Coordinate Reference System Types and associated Coordinate Field content

Notes:

1. Sometimes called "map grid".

2. There is significant variation worldwide in the convention used for projected CRS axis order and abbreviation. In some cases the easting will be given before the northing and in other cases the order will be northing before easting. In both of these scenarios the axes may be labelled X and Y; in such instances the first coordinate will be labelled X regardless of whether easting or northing and the second coordinate labelled Y.

3. Whether vertical coordinates are heights (positive up) or depths (positive down) is given in the CRS definition.

4. 1D, 2D, and 3D engineering types are not explicitly split out in CRSTYPEREF (Table 10) but implicitly differentiated through the Coordinate System (CS) dimension instead (field 11 in HC, 1, 6, 0).

5. Seismic bin grids are described through both an engineering 2D CRS and an associated affine transformation.

6. Compound CRS is a construct which allows coordinates from complementary horizontal 2D and vertical 1D CRSs to be linked together to form a single pseudo-3dimensional tuple. For clarity, the horizontal CRS and vertical CRS are listed with all the relevant details, the compound CRS simply links them together into a single entity. The horizontal and vertical CRS details are not repeated in the compound CRS.

5.3.1. Coordinate Reference System Implicit Identification

HC,1,3,0: Coordinate Reference System Implicit Identification

Mandatory for all CRSs

Field	Description	Data Type	Reference Code	Comments
5	"CRS Number/EPSG Code/ Name/Source"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG CRS Code	Integer		Blank if an EPSG-compliant database is not referenced
8	CRS Name	Text		
9	Version of EPSG-compliant database referenced	Text		Blank if an EPSG-compliant database is not referenced
10	Date of EPSG-compliant database referenced	Date		Blank if an EPSG-compliant database is not referenced
11	Source of EPSG-compliant database referenced	Text	e.g EPSG	Blank if an EPSG-compliant database is not referenced
12	Any Other Details	Text		Optional

Example Coordinate Reference System Implicit Identification

HC,1,3,0,CRS Number/EPSG Code/Name/Source...,1, ,WGS 84 / UTM zone 31N / EGM96, , , , HC,1,3,0,CRS Number/EPSG Code/Name/Source...,2,32631, WGS 84 / UTM zone 31N,7.6,2010:11:02,EPSG,Loaded from EPSG_v7_6.mdb HC,1,3,0,CRS Number/EPSG Code/Name/Source...,3, 4326, From EPSG_v7_6.mdb HC,1,3,0,CRS Number/EPSG Code/Name/Source...,4, 5773, EGM96 Geoid Height,7.6,2010:11:02,EPSG,Loaded from EPSG v7 6.mdb

5.3.2. Coordinate Reference System Explicit Definition

HC,1,4,0: Coordinate Reference System Details (Explicit Definition)

Mandatory for all CRSs

Field	Description	Data Type	Reference Code	Comments
5	"CRS Number/EPSG Code/ Type/Name"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG CRS Code	Integer		Blank if an EPSG-compliant database is not referenced
8	CRS Type Code	Integer	CRSTYPEREF	See Table 10
9	CRS Type	Text		As detailed in the CRSTYPEREF Table 10
10	CRS Name	Text		Use EPSG name if EPSG CRS code given

CRSTYPEREF: CRS Type Codes

Code	Name
1	projected
2	geographic 2D
3	geographic 3D
4	geocentric
5	vertical
6	engineering
7	compound

Table 10: CRSTYPEREF Codes

Example

HC,1,4,0,CRS Number/EPSG Code/Type/Name...,1,32628,1,projected,WGS 84 / UTM zone 28N

HC,1,4,1: Compound CRS Horizontal CRS Identification

Version history		
Item revised	Version 1.0	Version 1.1
Field 8	Horizontal CRS Name	EPSG Horizontal CRS Code
Field 9		Horizontal CRS Name

Mandatory when CRS type is compound. Shall not be given for any other CRS type. The horizontal CRS type shall be either Geographic 2D or Projected or Engineering. The horizontal CRS details shall be defined as a separate CRS entry.

Field	Description	Data Type	Reference Code	Comments
5	"Compound Horizontal CRS"	Description		
6	Compound CRS Number	Integer	CRSREF	
7	Horizontal CRS Number	Integer	CRSREF	
8	EPSG Horizontal CRS Code	Integer		Blank if an EPSG-compliant databaase is not referenced (Field added in version 1.1)
9	Horizontal CRS Name	Text		

The Horizontal CRS is a Geographic 2D CRS, Engineering 2D CRS or a Projected CRS. Its full details shall be described within the file.

Example

HC,1,4,1,Compound Horizontal CRS...,4,1,32628,WGS 84 / UTM zone 28N

HC,1,4,2: Compound CRS Vertical CRS Identification

Version history		
Item revised	Version 1.0	Version 1.1
Field 8	Vertical CRS Name	EPSG Vertical CRS Code
Field 9		Vertical CRS Name

Mandatory when CRS type is compound. Shall not be given for any other CRS type. The vertical CRS type shall be Vertical. The vertical CRS details shall be defined as a separate CRS entry.

Field	Description	Data Type	Reference Code	Comments
5	"Compound Vertical CRS"	Description		
6	Compound CRS Number	Integer	CRSREF	
7	Vertical CRS Number	Integer	CRSREF	
8	EPSG Vertical CRS Code	Integer		Blank if an EPSG-compliant database is not referenced (Field added in version 1.1)
9	Vertical CRS Name	Text		

The vertical CRS full details shall be described within the file.

Example

HC,1,4,2,Compound Vertical CRS...,4,3,5715,MSL depth

HC,1,4,3: Base Geographic CRS Details

Version history				
Item revised	Version 1.0	Version 1.1		
Field 9		Base Geographic CRS Name		

Mandatory when CRS type is projected. Shall not be given for any other CRS type.

Field	Description	Data Type	Reference Code	Comments
5	"Base Geographic CRS"	Description		
6	CRS Number	Integer	CRSREF	
7	Base Geographic CRS Number	Integer	CRSREF	
8	EPSG Base Geographic CRS Code	Integer		Blank if an EPSG-compliant database is not referenced
9	Base Geographic CRS Name	Text		(Field added in version 1.1)

The base CRS full details shall be described within the file.

Example

HC,1,4,3,Base Geographic CRS...,1,2,4326,WGS 84

HC,1,4,4: Geodetic Datum Details

Version history				
Item revised	Version 1.0	Version 1.1		
Field 9		Realization Epoch		

Mandatory when CRS type is geocentric, geographic 3D, geographic 2D or projected. Shall not be given when CRS type is vertical, engineering or compound.

Field	Description	Data Type	Reference Code	Comments
5	"Geodetic Datum"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG Datum Code	Integer		Blank if an EPSG-compliant database is not referenced
8	Datum name	Text		Use EPSG name if EPSG datum code given
9	Realization Epoch	Date		lf known YYYY:MM:DD (Field added in version 1.1)

Example

HC,1,4,4,Geodetic Datum...,1,6326,World Geodetic System 1984,1984:01:01

HC,1,4,5: Prime Meridian Details

Mandatory when both the CRS type is geocentric, geographic 3D, geographic 2D or projected, and the prime meridian name is not 'Greenwich' or the Greenwich longitude is not zero. Shall not be given when CRS type is vertical, engineering or compound.

Field	Description	Data Type	Reference Code	Comments
5	"Prime Meridian"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG Prime Meridian Code	Integer		Blank if an EPSG-compliant database is not referenced
8	Prime Meridian name	Text		
9	Greenwich Longitude	Variant		As defined by Unit Code
10	Unit Code	Integer	UNITREF	
11	Units of Measure Name	Text		

Example

HC,1,4,5,Prime Meridian...,1,8909,Ferro,-17.40,8,sexagesimal DMS

HC,1,4,6: Ellipsoid Details

Mandatory when CRS type is geocentric, geographic 3D, geographic 2D or projected. Shall not be given when CRS type is vertical, engineering or compound.

Field	Description	Data Type	Reference Code	Comments
5	"Ellipsoid"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG Ellipsoid Code	Integer		Blank if an EPSG-compliant database is not referenced
8	Ellipsoid Name	Text		Use EPSG name if EPSG ellipsoid code given
9	Semi-major axis (a)	Float		
10	Unit Code	Integer	UNITREF	
11	Units of Measure Name	Text		
12	Inverse flattening (1/f)	Float		

Example

HC,1,4,6,Ellipsoid...,1,7030,WGS 84,6378137,1,metre,298.257223563

HC,1,4,7: Vertical Datum Details

Mandatory when CRS type is vertical. Shall not be given for any other CRS type.

Field	Description	Data Type	Reference Code	Comments
5	"Vertical Datum"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG Datum Code	Integer		Blank if an EPSG-compliant database is not referenced
8	Datum Name	Text		Use EPSG name if EPSG datum code given

Example

HC,1,4,7,Vertical Datum...,3,5100,Mean Sea Level

HC,1,4,8: Engineering Datum Details

Mandatory when CRS type is engineering. Shall not be given for any other CRS type.

5 "Engineering Datum" Description	
6 CRS Number Integer CRSREF	
7 EPSG Datum Code Integer Blank if an EPSG-compreferenced	pliant database is not
8 Datum Name Text Use EPSG name if EPS	SG datum code given

Example

HC,1,4,8,Engineering Datum...,3,9315,Seismic bin grid datum

HC,1,5,0: Map Projection Details

Mandatory when CRS type is projected. Shall not be given for any other CRS type.

Field	Description	Data Type	Reference Code	Comments
5	"Map Projection"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG Coordinate Operation Code	Integer		Blank if an EPSG-compliant database is not referenced
8	Projection Name	Text		Use EPSG name if EPSG code given

Example

HC,1,5,0,Map Projection

,1,16028,UTM zone 28N

HC,1,5,1: Projection Method Details

Mandatory when CRS type is projected. Shall not be given for any other CRS type.

Field	Description	Data Type	Reference Code	Comments
5	"Projection Method"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG Coordinate Operation Method Code	Integer		Use EPSG Dataset method code
8	Coordinate Operation Method Name	Text		Use EPSG name
9	Number of Projection Parameters	Integer		As defined in EPSG method. The number of HC,1,5,2 records listed for this map projection should equal this value

Example

HC,1,5,1, Projection Method...,1,9807, Transverse Mercator,5

HC,1,5,2: Projection Parameter Details

Mandatory when CRS type is projected. Shall not be given for any other CRS type. For each map projection definition the number of HC,1,5,2 records shall equal the number of projection parameters for that map projection's projection method.

Field	Description	Data Type	Reference Code	Comments
5	Parameter Name	Description		Use EPSG name
6	CRS Number	Integer	CRSREF	
7	EPSG Coordinate Operation Parameter Code	Integer		Use EPSG Dataset Parameter Code
8	Parameter Value	Variant		As defined by Unit Code
9	Unit Code	Integer	UNITREF	
10	Units of Measure Name	Text		

Example

HC,1,5,2,Latitude of natural origin	,1,8801 .1.8802.	0,3,degree
HC,1,5,2,Scale factor at natural origin HC.1.5,2,False easting	,1,8805,0.1	9996,4, unity
HC,1,5,2,False northing	,1,8807,	0,1, metre

HC,1,6,0: Coordinate System Details

Mandatory when CRS type is geocentric, geographic 3D, geographic 2D, projected, vertical or engineering. Shall not be given when CRS type is compound.

Field	Description	Data Type	Reference Code	Comments
5	"Coordinate System"	Description		
6	CRS Number	Integer	CRSREF	
7	EPSG Coordinate System Code	Integer		Blank if an EPSG-compliant database is not referenced
8	Coordinate System Name	Text		
9	Coordinate System Type Reference	Integer	CSTYPEREF	See Table 11
10	Coordinate System Type Name	Text		As detailed in Table 11
11	Dimension	Integer		The number of HC, 1, 6, 1 records listed for this coordinate system should equal this value

It may be necessary to incorporate reserved characters to replicate the EPSG name, for example

Ellipsoidal 2D CS. Axes: latitude, longitude. Orientations: north, east. UoM: degree would be represented (using escape characters for the reserved characters) as Ellipsoidal 2D CS. Axes\u003A latitude\u002C longitude. Orientations\u003A north\u002C east. UoM\u003A degree
Code	Name	Used with CRS type(s)
1	Affine	engineering
2	Cartesian	geocentric, projected, engineering
3	Ellipsoidal	geographic 3D, geographic 2D
4	Polar	engineering
5	Vertical	vertical

CSTYPEREF: Coordinate System Type Reference

Table 11: CSTYPEREF Codes and constraints in relation to CRS type

Example

HC,1,6,0,Coordinate System...,1,4400,Cartesian 2D CS,2,Cartesian,2

HC,1,6,1: Coordinate Axis Details

Mandatory when CRS type is geocentric, geographic 3D, geographic 2D, projected, vertical or engineering. Shall not be given when CRS type is compound. For each CRS definition the number of HC,1,6,1 records shall equal the Dimension for that CRS's Coordinate System as given in the HC,1,6,0 record field 11.

Field	Description	Data Type	Reference Code	Comments
5	"Coordinate System Axis n"	Description		Where 'n' is the Coordinate Order
6	CRS Number	Integer	CRSREF	
7	Coordinate Order	Integer		
8	EPSG Coordinate Axis Code	Integer		Use EPSG Dataset Axis code ¹
9	Axis Name	Text		Use EPSG Axis Name
10	Axis Orientation	Text		
11	Axis Abbreviation	Text		Use EPSG abbreviation if EPSG axis code given
12	Unit Code	Integer	UNITREF	
13	Units of Measure Name	Text		

Notes:

1. Not to be confused with the EPSG Axis Name Code

The Coordinate Order is a sequential number from 1 onwards where the maximum value n equals the coordinate system dimension. Thus for a 3D CRS there should be 3 records of type **HC**,1,6,1 with Coordinate Order values of 1,2 and 3 respectively. Within data records, coordinates are ordered within tuples as described in Table 9. For a 1D CRS there should be one record of type **HC**,1,6,1, always with Coordinate Order value of 1; when that 1D CRS is of CRS type vertical the vertical coordinate will be in the *third* field of the coordinate tuple.

Example

HC,1,6,1,Coordinate System Axis 1...,1,1,1, Easting, east,E,1,metre HC,1,6,1,Coordinate System Axis 2...,1,2,2,Northing,north,N,1,metre

5.3.3. Coordinate Transformation Implicit Identification

HC,1,7,0: Coordinate Transformation Implicit Identification

Mandatory for all coordinate transformations

Field	Description	Data Type	Reference Code	Comments
5	"Transformation Number/ EPSG Code/Name/Source"	Description		
6	Coordinate Transformation Number	Integer	COTRANSREF	
7	EPSG Coordinate Operation Code	Integer		Blank if an EPSG-compliant database is not referenced
8	Transformation Name	Text		Use EPSG name if EPSG code given
9	Version of EPSG-compliant database referenced	Text		Blank if an EPSG-compliant database is not referenced
10	Date of EPSG-compliant database referenced	Date		Blank if an EPSG-compliant database is not referenced
11	Source of EPSG-compliant database referenced	Text	e.g EPSG	Blank if an EPSG-compliant database is not referenced
12	Any Other Details	Text		Optional

Example Coordinate Transformation Implicit Identification

HC,1,7,0,Transformation Number/EPSG Code/Name/Source ,1, 1613,ED50 to WGS 84
 (24) ,7.4.1,2010:02:01,EPSG,Loaded from EPSG_v7_4_1.mdb
HC 1 7 0 Transformation Number/EPSG Code/Name/Source 2 15593 geog3D to

HC,1,7,0,Transformation Number/EPSG Code/Name/Source ,2,15593, geog3D to geog2D,7.4.1,2010:02:01,EPSG,Loaded from EPSG_v7_4_1.mdb

5.3.4. Coordinate Transformation Explicit Definition

HC,1,8,0: Coordinate Transformation Name

Mandatory for all Coordinate Transformations

Field	Description	Data Type	Reference Code	Comments
5	"Transformation Number/ EPSG Code/Name"	Description		
6	Coordinate Transformation Number	Integer	COTRANSREF	
7	EPSG Coordinate Operation Code	Integer		Blank if an EPSG-compliant database is not referenced
8	Transformation Name	Text		Use EPSG name if EPSG code given
9	Transformation Accuracy	Variant		Optional. In metres. Should be given when known

Example

HC,1,8,0,Transformation Number/EPSG Code/Name...,1,1998,ED50 to WGS 84 (36),1

HC,1,8,1: Coordinate Transformation Details

Field	Description	Data Type	Reference Code	Comments
5	"Source CRS/Target CRS/ Version"	Description		
6	Coordinate Transformation Number	Integer	COTRANSREF	
7	Source CRS Number	Integer	CRSREF	
8	Source CRS EPSG Code	Integer		Blank if an EPSG-compliant database is not referenced
9	Source CRS Name	Text		
10	Target CRS Number	Integer	CRSREF	
11	Target CRS EPSG Code	Integer		Blank if an EPSG-compliant database is not referenced
12	Target CRS Name	Text		
13	Transformation Version	Text		Optional

Mandatory for all Coordinate Transformations

Example

HC,1,8,1,Source CRS/Target CRS/Version...,1,2,4230,ED50,3,4326,WGS 84,EPSG-Ger Nsea

HC,1,8,2: Coordinate Transformation Method Details

Mandatory for all Coordinate Transformations

Field	Description	Data Type	Reference Code	Comments
5	"Transformation Method"	Description		
6	Coordinate Transformation Number	Integer	COTRANSREF	
7	Coordinate Operation Method Code	Integer		Use EPSG Dataset method code
8	Coordinate Operation Method Name	Text		Use EPSG name
9	Operation Reversible Flag	Integer		0 = operation is not reversible 1 = operation is reversible
10	Number of Parameters	Integer		As defined in EPSG method. The number of HC, 1, 8, 3 or HC, 1, 8, 4 records listed for this transformation should equal this value

Example

HC,1,8,2,Transformation Method...,1,9606,Position Vector transformation (geog2D domain),1,7

HC,1,8,3: Transformation Parameter File Details

Mandatory if transformation method requires a parameter file

Field	Description	Data Type	Reference Code	Comments
5	Parameter File Name	Description		
6	Coordinate Transformation Number	Integer	COTRANSREF	
7	Coordinate Operation Parameter Code	Integer		Use EPSG Dataset Parameter Code
8	Parameter File Name	Text		
9	Operation Parameter Sign Reversal	Integer		Mandatory if operation method is reversible (HC , 1 , 8 , 2 record field $9 = 1$), not required if operation method is not reversible. 0 = operation parameter sign is not reversed forreverse transformation $1 = operation parameter sign is reversed forreverse transformation$

Example

HC,1,8,3,Latitude difference file HC,1,8,3,Longitude difference file

,1,8657,conus.las,1 ,1,8658,conus.los,1

HC,1,8,4: Transformation Parameter Details

Mandatory if transformation method requires a set of parameters

Field	Description	Data Type	Reference Code	Comments
5	Parameter Name	Description		Use EPSG name
6	Coordinate Transformation Number	Integer	COTRANSREF	
7	Coordinate Operation Parameter Code	Integer		Use EPSG Dataset Parameter Code
8	Parameter Value	Variant		As defined by Unit Code
9	Unit Code	Integer	UNITREF	
10	Units of Measure Name	Text		
11	Operation Parameter Sign Reversal	Integer		Mandatory if operation method is reversible (HC , 1, 8, 2 record field 9 = 1), not required if operation method is not reversible. 0 = operation parameter sign is not reversed for reverse transformation 1 = operation parameter sign is reversed for reverse transformation

Example

HC,1,8,4,X-axis	translation.	,1,8605,-	-157.89,	1,	metre,1
HC,1,8,4,Y-axis	translation.	,1,8606,	-17.16,	1,	metre,1
HC,1,8,4,Z-axis	translation.	,1,8607,	-78.41,	1,	metre,1
HC,1,8,4,X-axis	rotation	,1,8608,	2.118,	9,	arc-second,1
HC,1,8,4,Y-axis	rotation	,1,8609,	2.697,	9,	arc-second,1
HC,1,8,4,Z-axis	rotation	,1,8610,	-1.434,	9,	arc-second,1
HC,1,8,4,Scale d	difference…	,1,8611,	-5.38,	10,parts	per million,1

5.3.5. Example Point Conversion

HC,1,9,0: Example Point Conversion

Recommended

Field	Description	Data Type	Reference Code	Comments
5	"Example Point Conversion"	Description		
6	Point Number	Integer		
7	Point Name	Text		
8	CRS Number	Integer	CRSREF	
9	Coordinate 1	Variant		Format as defined for CRS
10	Coordinate 2	Variant		Format as defined for CRS
11	Coordinate 3	Variant		Format as defined for CRS

Fields 8 through 11 can be repeated as required, or the record repeated. For each point, the coordinates should be listed in at least two CRSs.

This record allows the coordinates for one or more test points to be listed referenced to different CRSs. This is to allow the configured coordinate reference systems to be checked. The point is identified by the "Point Number" which is repeated for each CRS in which the position of the point is shown.

Example Point Conversion Example

```
HC,1,9,0,Example Point Conversion... ,1,STN 1,1,674092.03,9716717.23,,2,-
2.561968694,133.565880528,
```

6. Common Header: Survey Configuration Data

6.1. General Survey Configuration Information

HC,2,0,0: General Survey Configuration Information

Field	Description	Data Type	Reference Code	Comments
5	"Survey Configuration"	Description		
6	Number of Production Systems Defined	Integer		
7	Number of Receiver Types Defined	Integer		
8	Number of Positioning Objects Defined	Integer		
9	Offset Mode Unit Code	Integer	UNITREF	
10	Offset Mode Unit Name	Text		

Note: Offset mode is fixed to rectangular.

Example

HC,2,0,0,Survey Configuration

,2,1,23,1,metre

6.2. Production System Information

HC,2,1,0: Production System Information

Field	Description	Data Type	Reference Code	Comments
5	System Name	Description		
6	System Reference Number	Integer	PRODSYSREF	
7	System Type	Text		e.g. "Recording" or "Navigation"
8	System Model Details	Text		
9	Software Version	Text		
10	Software Version Date	Date		

A production system is any computer system used during survey operations, such as an Integrated Navigation System or Seismic Recording System.

Field	Description	Data Type	Reference Code	Comments
5	Attribute Name	Description		See Table 12
6	System Reference Number	Integer	PRODSYSREF	
7	Attribute Reference Number	Integer	PSATTREF	See Table 12
8	Attribute Value	Variant		If fields 9 and 10 are blank, the Attribute Value is assumed to be of text data type
9	Attribute Units	Integer	UNITREF	
10	Attribute Unit Name	Text		

HC,2,1,1: Production System Attributes

Record may be repeated.

Production System Attribute Reference Numbers (PSATTREF)

Reference Number	Description
1	Polarity
2	Sample Interval
3	Record Length
4	Channels Per Record
5	Таре Туре
6	Tape Format
7	Tape Density
8	High Cut Filter Frequency
9	High Cut Filter dB Level
10	High Cut Filter Slope
11	Notch Filter Centre Frequency
12	Notch Filter Lower -3dB Point Frequency
13	Notch Filter Higher -3dB Point Frequency
14	Low Cut Filter Frequency
15	Low Cut Filter dB Level
16	Low Cut Filter Slope
17	Time Delay FTB to SOD
18	Time Delay FTB to SOD Applied to Data Flag
19	Components Recorded
20	Method Of Transfer With Recording System
100 onwards	User to provide Attribute Name description in HC,2,1,1

Table 12: Production System Attribute Reference Numbers

Version history		
Item revised	Version 1.0	Version 1.1
Field 5	"Auxiliary Channel n Definition"	Auxiliary Group Description
Field 7	Channel Number	Group Number
Field 8	Channel Type	Channel Number
Field 9	Channel Description	Channel Type
Field 10	Unit Code	Channel Description
Field 11	Unit Name	TRS Number
Field 12		Unit Code
Field 13		Unit Name

HC,2,1,2: Auxiliary Channel Definition

Field	Description	Data Type	Reference Code	Comments
5	Auxiliary Group Description	Description		Brief description of a group of auxiliary channels with 'n' channels (Field changed in version 1.1)
6	Recording System Ref. Number	Integer	PRODSYSREF	
7	Group Number	Integer	AUXGROUPREF	Optional (Field added in version 1.1)
8	Channel Number	Integer	AUXREF	
9	Channel Type	Text		
10	Channel Description	Text		Optional
11	TRS Number	Integer	TRSREF	(Field added in version 1.1)
12	Unit Code	Integer	UNITREF	Required for P2 data record T2,1,1,0 Field 9
13	Unit Name	Text		

Record may be repeated.

This record allows the inclusion of an optional Group Number (Field 7) so that channels can be organized together. There does not need to be a channel description for every channel described in field 5. The group number also facilitates the duplication of channel numbers as long as they belong to different groups.

Field	Description	Data Type	Reference Code	Comments
5	"Attribute Record Type Definition"	Description		
6	System Reference Number	Integer	PRODSYSREF	
7	Attribute Record Type Number	Integer	PSATTTYPEREF	
8	TRS Number	Integer	TRSREF	
9	Point Number Format Code	Integer	DATATYPEREF	
10	Number of Record Extension Fields Recorded per Record	Integer		
11	Record Extension Field Definition	Record Extension Field Text String		Optional Standard Record Extension Definition - see Table 5

HC,2,1,3: Attribute Record Type Definition (Record added in version 1.1)

Field 11 is repeated as required.

Refer to Table 12a for format-defined record extension identifiers (as input to Field 11).

This optional record allows assigning production system attributes that are not specific to a position object (e.g. the vessel), for example Unit Variance, Degrees of Freedom, misclosure, etc. and is applied on a per-shot per-production system basis. Used in this way, the record provides a facility to compare the quality of the network solution from survey to survey.

This header record is used in conjunction with E2,1,0,1 P2 data records.

Event Attribute Record Extension Field Identifiers

Extension Identifier	Description	Additional Parameter
1	FFID	
2	Unit Variance	Network Id
3	External Reliability (MDE)	Network Id
4	Degress of Freedom	Network Id
5	Number of Observations	Network Id
6	Streamer Rotation	Streamer Id
7	Misclosure	Streamer Id
100 onwards	User Defined	

Table 12a: Event Attribute Record Field Extension Identifiers

Example Production System Records

```
HC,2,1,0,SN388...
                                ,1,Recording,007,1.0,2000:12:01
                              ,1, 1, SEG, ,
,1, 2, 2,6,1
,1, 3, 7,5,
,1, 4, 400, ,
HC,2,1,1,Polarity...
HC,2,1,1,Sample Interval...
                                              2,6,milliseconds
HC,2,1,1,Record Length ...
                                                7,5, seconds
HC,2,1,1,Channels per Record...
HC,2,1,1,User-defined attribute...,1,100,some text, ,
HC,2,1,2, NavTB 36 channels 1 to 36,1,1,1,Auxiliary,
                                                             Nav TB,1,,
HC,2,1,2, NavTB 36 channels 1 to 36,1,1,2,Auxiliary,Gun return TB,1,,
HC,2,1,2, NavTB 36 channels 1 to 36,1,1,3,Auxiliary, Seal QC,1,,
HC,2,1,2, Gunlink 12 Channels 1 to 12,1,2,1,Auxiliary, String 1 NP1,1,,
HC,2,1,2, Gunlink 12 Channels 1 to 12,1,2,2,Auxiliary, String 2 NP1,1,,
HC,2,1,2, Gunlink 12 Channels 1 to 12,1,2,3,Auxiliary, String 3 NP1,1,,
HC,2,1,2, Gunlink 12 Channels 1 to 12,1,2,4,Auxiliary, String 4 NP1,1,,
HC,2,1,2, Gunlink 12 Channels 1 to 12,1,2,5,Auxiliary, String 5 NP1,1,,
HC,2,1,2, Gunlink 12 Channels 1 to 12,1,2,6,Auxiliary, String 6 NP1,1,,
HC,2,1,0,Seal...,1, Recording, 428, 1.0,2009:02:14
HC,2,1,0,Orca...,2,Navigation,Orca,1.3.4,2010:04:01
```

```
HC,2,1,3,Attribute Record Type Definition,2,1,1,1,3,2;1;Network Unit Variance;4,4;1;
;Network Degrees of Freedom;4,7;1;Misclosure;1
```

6.3. Receiver Information

HC,2,2,0: Receiver Type Definition

Version history		
Item revised	Version 1.0	Version 1.1
HC,2,2,0	Receiver Information	Receiver Type Definition
Field 6	Receiver Reference Number	Receiver Type Reference Number
Field 7	Receiver Short Name	Receiver Type Short Name

Field	Description	Data Type	Reference Code	Comments
5	Receiver Name	Description		
6	Receiver Type Reference Number	Integer	OBJREF [RX]	(Field modified in version 1.1)
7	Receiver Type Short Name	Text	OBJNAME	e.g. "RT1" (Field modified in version 1.1)
8	Receiver Type	Text		
9	Receiver Model Details	Text		

HC,2,2,1: Receiver Attributes (Land seismic only)

Version history				
Item revised	Version 1.0	Version 1.1		
Field 6	Receiver Reference Number	Receiver Type Reference Number		

Field	Description	Data Type	Reference Code	Comments
5	Attribute Name	Description		See Table 13
6	Receiver Type Reference Number	Integer	OBJREF [RX]	(Field modified in version 1.1)
7	Attribute Reference Number	Integer	RXATTREF	See Table 13
8	Attribute Value	Variant		If fields 9 and 10 are blank, the Attribute Value is assumed to be of text data type
9	Attribute Units	Integer	UNITREF	
10	Attribute Unit Name	Text		

Record may be repeated.

Receiver Attribute Reference Numbers (RXATTREF)

Reference Number	Description
1	Polarity
2	Damping Coefficient
3	Natural Frequency
4	Number of Elements in Group
5	Inline Dimension of the Group
6	Crossline Dimension of the Group
7	Inline Distance Between Elements in the Group
8	Crossline Distance Between Elements in the Group
100 onwards	User to provide Attribute Name description in HC,2,2,1

Table 13: Receiver Attribute Reference Numbers

Example Receiver Records

HC,2,2,0,P44A HC,2,2,1,Polarity HC,2,2,1,Damping Coefficient HC,2,2,1,Natural Frequency ,1,RT1,P44A,OBC
,1,1, SEG, ,
,1,2,0.70,5,unitless
,1,3,10.0,6, Hertz

6.4. Definition of Positioning Objects

In order to achieve maximum flexibility, the P-formats use the concept of a positioning object. This object can be any main survey object for which a position is generated, such as a vessel or gun array. A positioning object can also be a virtual object such as a CMP or any 'Mid Point' or 'Mean Point' type position (such as the mean position between 2 gun arrays).

Each positioning object is referenced by a reference number [OBJREF] that uniquely identifies the object, but also defines a short name [OBJNAME] which is used to provide a modicum of human readability to the P1/11 position records. Thus a vessel might be defined as reference number #1, with a full name of "M/V Seisco Oilfinder" and a short name of "V1".

Each positioning object can be defined with a nominal position relative to another positioning object to allow for the survey configuration to be defined. This position is relative to the defined local reference position of the parent positioning object.

Thus a simple source configuration would look as follows

```
HC,2,3,0,M/V Vessel...,1, V1,1, Vessel,,1, , , , , , , NRP,,,
HC,2,3,0,Port Gun Array...,2,G01,4,Air Gun Array,, ,1,-25,-390,-6,COS,,,
HC,2,3,0,Stbd Gun Array...,3,G02,4,Air Gun Array,, ,1, 25,-390,-6,COS,,,
```

Recording the position of each object relative to a defined parent is recommended for field data, but it is possible to define a source without recording the parent vessel, or to define the source with a parent vessel without the nominal relative position if this is not known for any reason.

Thus you might have

```
HC,2,3,0,M/V Vessel... ,1, V1,1, Vessel,,1, , , , ,NRP,,,
HC,2,3,0,Port Gun Array...,2,G01,4,Air Gun Array,, ,1,-25,-390,-6,COS,,,
HC,2,3,0,Stbd Gun Array...,3,G02,4,Air Gun Array,, ,1, 25,-390,-6,COS,,,
Or
HC,2,3,0,M/V Vessel... ,1, V1,1, Vessel,,1, ,,,,,,
HC,2,3,0,Port Gun Array...,2,G01,4,Air Gun Array,, , 1,,,,,,
HC,2,3,0,Stbd Gun Array...,3,G02,4,Air Gun Array,, , 1,,,,,,,
Or
HC,2,3,0,Port Gun Array...,1,G01,4,Air Gun Array,, , 1,,,,,,,
HC,2,3,0,Stbd Gun Array...,2,G02,4,Air Gun Array,,,,,,,,,
```

Positioning objects should be defined as required by the file contents.

Positioning objects can be defined in two locations in the Common Header. A positioning object which is a Receiver is defined in the HC,2,2,0 record, and any other positioning object is defined in the HC,2,3,0 record. The OBJREF number is unique regardless of which record is used for definition.

If it is required to link mid point nodes back to the pseudo nodes that form the mid point, the pseudo nodes would need to be defined as positioning objects in HC,2,3,0. For example, a virtual positioning object such as a CMP can be related to its pseudo nodes using the 'Towed-by' field (field 12) to indicate the pseudo nodes of which it is the mid point, as demonstrated by the following header records:

Throughout the formats right-handed Cartesian co-ordinate frames are maintained to express offsets.

For marine surveys, the axes of the co-ordinate frames are defined as follows:

- Across Offset: Horizontal axis, perpendicular to the Along Axis, positive towards starboard.
- Along Offset: Parallel to the vessel's longitudinal axis, positive towards the bow.
- **Above Offset**: Perpendicular to the two horizontal axes, the axis completes a right-handed X,Y,Z co-ordinate frame. Hence, positive Z is upwards, synonymous with height.

For land surveys, the axes of the co-ordinate frames are defined as follows:

- Across Offset: Horizontal axis, perpendicular to the Along Axis, positive towards the right.
- Along Offset: Parallel to the object's longitudinal axis, positive towards the front.
- **Above Offset**: Perpendicular to the two horizontal axes, the axis completes a right-handed X,Y,Z co-ordinate frame. Hence, positive Z is upwards, synonymous with height.

Objects are defined with a single reference point relative to the parent object. All local offsets of any items located on the object are referenced to this location.

6.4.1. Object Reference Numbers

The object reference numbers (OBJREF) shall be unique within each file. The references OBJREF[RX] and OBJREF[NODE] are subsets of the OBJREF reference numbers and can be used in any place when an OBJREF is used. However, where an OBJREF[xxx] is specified, only the relevant subset object can be referred to.

6.5. Positioning Objects

HC,2,3,0: Object Summary Information

Version history				
Item revised	Version 1.0	Version 1.1		
Field 12 Data Type	Integer	Integer List		

Field	Description	Data Type	Reference Code	Comments
5	Object Full Name	Description		
6	Object Reference Number	Integer	OBJREF	
7	Object Short Name	Text OBJNAME e.g. 'V1'		e.g. 'V1'
8	Object Type Reference Code	Integer	OBJTYPEREF	See Table 14
9	Object Type	Text	OBJTYPE	e.g. "Vessel" - see Table 14
10	Object Model Details	Text		Optional
11	Systems On This Object	Integer List	PRODSYSREF	Blank if n/a
12	"Towed By" Object Ref. Number(s)	Integer List	OBJREF	Blank if n/a Use an integer list to name the pseudo nodes if defining a 'Mid Point' or 'Mean Point' virtual object type. (Field modified in version 1.1)
13	Across Offset	Float		blank if n/a

14	Along Offset	Float	blank if n/a
15	Above Offset	Float	blank if n/a
16	Description of Local Reference Point	f Local Reference Point Text e.g. "Towpoi	
17	Number of Objects Towed By this Object	Integer	Blank if no objects towed by this object
18	Number of External Position Sensors	Integer	e.g. GNSS receivers. Blank if no position sensor data is listed for this object
19	Number of Nodes	Integer	Blank if no node data is listed for this object

The numbers given above are for items directly located on or towed by the Object.

Object Type Codes (OBJTYPEREF) and Reserved OBJTYPE Text

Version history		
Item revised	Version 1.0	Version 1.1
Code 4	Air Gun	Air Gun Array
Code 5	Water Gun	Water Gun Array
Code 12		Mid Point

OBJTYPEREF Code	OBJTYPE Text	Description	
1	Vessel	Survey vessel	
2	Streamer	Any towed or deployed streamer	
3	Node	Any deployed node containing sensors	
4	Air Gun Array	Any towed air gun array	
5	Water Gun Array	Any towed water gun array	
6	Vibroseis	Any Vibroseis source	
7	Explosive	Any explosive source	
8	Electromagnetic	Any EM source	
9	Gun String	Any towed array substring.	
10	Float	Any towed body, such as a tailbuoy or front float	
11	Echo Sounder	Any fixed acoustic depth sensor	
12	Mid Point	Any mid point or mean position between 2 objects (OBJTYPEREF Code added in version 1.1)	
21-onwards	(User defined)	User to provide OBJTYPE (field 9) in HC,2,3,0	

Table 14: OBJTYPEREF Codes

Field	Description	Data Type	Reference Code	Comments
5	Attribute Name	Description		See Table 15
6	Object Reference Number	Integer	OBJREF	
7	Attribute Reference Number	Integer	OBJATTREF	See Table 15
8	Attribute Value	Variant		If fields 9 and 10 are blank, the Attribute Value is assumed to be of text data type
9	Attribute Units	Integer	UNITREF	
10	Attribute Unit Name	Text		

HC,2,3,1: Positioning Object Attributes

Record may be repeated.

Object Attribute Reference Numbers (OBJATTREF)

Version history						
Item revised	Version 1.0	Version 1.1				
Code 40		Master Echo Sounder				

Reference Number	Description	Comments
1	Polarity	
2	Total Charge Size	
3	Force	
4	Air Volume	
5	Vertical Fold of Stack	
6	Number of Sweeps Per VP	
7	Number of Elements in Pattern	
8	Inline Dimension of the Pattern	
9	Crossline Dimension of the Pattern	
10	Inline Distance Between Elements in the Pattern	
11	Crossline Distance Between Elements in the Pattern	
12	Control Type	
13	Correlator Type	
14	Noise Suppression Type Applied Before Summing	
15	Sweep Туре	
16	Sweep Length	
17	Sweep Start Frequency	

18	Sweep End Frequency			
19	Taper Type			
20	Taper Start Length			
21	Taper End Length			
22	Nominal Shot Depth			
23	Length of Charge			
24	Nominal Soil Type			
25	Drilling Method			
26	Nominal Weathering Thickness			
27	Peak to Peak Output			
28	Primary to Bubble Ratio			
29	Nominal Air Pressure			
30	Number of Sub Arrays			
31	Nominal Towing Depth			
32	Depth Corrections Applied			
33	Sound Velocity Used			
34	Heave Corrections Applied			
35	Number of Receivers			
36	Near Receiver Number			
37	Far Receiver Number			
38	Receiver Spacing			
39	Shot Point Interval			
40	Master Echo Sounder	(Object added in version 1.1)		
100 onwards	User to provide Attribute Name in HC,2,3,1			

Table 15: Object Attribute Reference Numbers

Example Object Summary Records

HC,2,3,0,Source	,2,A1,4,Air Gun Array,,,,,,,,,
HC,2,3,1,Polarity	,2, 1, SEG, ,
HC,2,3,1,Air Volume	,2, 4, 1400.0,8,cm3
HC,2,3,1,Nominal Air Pressure	,2, 29, 2000.0,9,psi
HC,2,3,1,User-defined attribute	,2,100,some text, ,

HC,2,3,0,MV SeisFinder	, 2	2,V01,	1,	7	/essel,	,	1&2, ,	,	,	,	NRP,8,3	3, 6
HC,2,3,0,Streamer S1	, 3	8,S01,	2,	St	ceamer,S	Sentinel,	,2,	250.0,	-407.8,	-6.5,	CNG,1,	,12
HC,2,3,0,Streamer S2	, 4	,S02,	2,	St	ceamer,S	Sentinel,	,2,	150.0,	-407.8,	-6.5,	CNG,1,	,12
HC,2,3,0,Streamer S3	, 5	,s03,	2,	St	ceamer,S	Sentinel,	,2,	50.0,	-407.8,	-6.5,	CNG,1,	,12
HC,2,3,0,Streamer S4	, 6	5,S04,	2,	St	ceamer,S	Sentinel,	,2,	-50.0,	-407.8,	-6.5,	CNG,1,	,12
HC,2,3,0,Streamer S5	, 7	,S05,	2,	St	ceamer,S	Sentinel,	,2,	-150.0,	-407.8,	-6.5,	CNG,1,	,12
HC,2,3,0,Streamer S6	, 8	8,S06,	2,	St	ceamer,S	Sentinel,	,2,	-250.0,	-407.8,	-6.5,	CNG,1,	,12
HC,2,3,0,Gun Array G1	, 9	,G01,	4,Air	Gun	Array,	Bolt,	,2,	-25.0,	-284.5,	-6.0,	cos, ,	, 6
HC,2,3,0,Gun Array G2	,10	,G02,	4,Air	Gun	Array,	Bolt,	,2,	25.0,	-284.5,	-6.0,	cos, ,	, 6
HC,2,3,0,Tailbuoy on S1.	.,11	,T01,	10,		Float,	,	,3,	0.0,	-3083.1,	6.5,	Fowpoint, ,	, 2
HC,2,3,0,Tailbuoy on S2.	.,12	2,T02,	10,		Float,	,	,4,	0.0,	-3083.1,	6.5,	Fowpoint, ,	, 2
HC,2,3,0,Tailbuoy on S3.	.,13	в, тоз, 1	10,		Float,	,	,5,	0.0,	-3083.1,	6.5,	Fowpoint, ,	, 2
HC,2,3,0,Tailbuoy on S4.	.,14	,т04,	10,		Float,	,	,6,	0.0,	-3083.1,	6.5,	Fowpoint, ,	, 2
HC,2,3,0,Tailbuoy on S5.	.,15	, тоз, 1	10,		Float,	,	,7,	0.0,	-3083.1,	6.5,	Fowpoint, ,	, 2
HC,2,3,0,Tailbuoy on S6.	.,16	б, ТОб, З	10,		Float,	,	,8,	0.0,	-3083.1,	6.5,	Fowpoint, ,	, 2

7. Comment Records

Comment records should be inserted as close as possible to the data items to which they refer. They may be inserted into the header or the data section but shall not be inserted before record **HC,0,1,0**.

CC,1,0,0: Additional Information

Field	Description	Data Type	Reference Code	Comments
5	Comment	Text		
Example				
CC,1,0,0,SH	HOOTING POINT V1 M	EAN CMP AT (0.0	-100.0)	

CC,1,0,0,LINE CSL-T21001P9015 265 SHOTS (1004 TO 1268) CC,1,0,0,GENERATED BY ORCA 1.8.1 FROM QC (NRT) DATABASE CC,1,0,0,12 SOURCE MAPPING G2 A 2 CC,1,0,0,12 SOURCE MAPPING G1 B 1 CC,1,0,0,13 STREAMER MAPPING A 1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

8. P2 Specific Format Information

8.1. Definition of Objects

In order to achieve maximum flexibility, the P2/11 Common Header uses the concept of a positioning object. This object can be any main survey object for which a position is generated, such as a vessel or gun array. An object is also defined for each type of receiver used in the survey, which allows for single point receiver logging, where each receiver object is defined uniquely within the file, and also for receiver grouping such as a seismic streamer where the streamer is linked to receiver objects which define the receiver types in use on the streamer.

Additionally, a positioning sensor or relevant location on an object can be defined as a node. Nodes come in three types

- 1) A fixed location, such as a reference station, defined in the H2,5,2,0 record.
- 2) A non-fixed positioning sensor, such as a streamer compass, defined in the H2,5,3,0 with node type 1.
- 3) A non-fixed object location which doesn't relate to a positioning sensor, such as the towpoint location on a streamer, defined in the H2,5,3,0 with node type 2.

Each object and node is referenced by a reference number [OBJREF] that uniquely describes the object, but also defines a short name [OBJNAME]. Thus a vessel might be defined as reference number #1, with a full name of "M/V Seisco Oilfinder" and a short name of "V1".

Each object and node is defined with a nominal position relative to another object to allow for the survey configuration to be defined. This position is relative to the defined local reference position of the parent object.

Thus a simple source configuration would look as follows

```
HC,2,3,0,M/V Vessel...,1, V1,1, Vessel,,1,,,,,,NRP,,,
HC,2,3,0,Port Gun Array...,2,G01,4,Air Gun Array,,,1,-25,-390,-6,COS,,,
HC,2,3,0,Stbd Gun Array...,3,G02,4,Air Gun Array,,,1, 25,-390,-6,COS,,,
H2,5,3,0,355,COS, G01,,2,0,0,0,1,
H2,5,3,0,357, 1, G01D01,1,2,8,7,0,1,1
```

The axes of the local coordinate frames are defined as follows:

- Across Offset: Horizontal axis, perpendicular to the Along Axis, positive towards starboard.
- Along Offset: Parallel to the vessel's longitudinal axis, positive towards the bow.
- **Above Offset**: Perpendicular to the two horizontal axes, the axis completes a right-handed X,Y,Z co-ordinate frame. Hence, positive Z is upwards, synonymous with height.

Objects can be defined in two locations in the P2/11 format. An object which is a Receiver is defined in the HC,2,2,0 record, and any other object is defined in the HC,2,3,0 record. A node is defined in the H2,5,2,0 and H2,5,3,0 records, depending on whether it is a fixed or non-fixed location. The OBJREF number is unique regardless of which record is used for definition.

8.2. Corrections

Scale Factor (C/O) Correction

The Scale Factor or C/O should correct the raw observation for any scale errors.

Normally no scale correction needs to be made, in which case the value of the C/O needs to be recorded as 1 (unity).

One application of the scale factor may occur when ranges are reduced in the measurement device for two-way travel, while the signal has only travelled one-way as can be the case with sing-around ranges. In such cases the scale factor needs to be set to 2.

Fixed (C-O) Correction

Fixed (C-O) corrections do not vary over time, nor with location, and are determined by the mode of operation of the relevant positioning system or sensor. The Fixed (C-O) must be recorded in the same measurement unit as the observation it refers to.

Variable (C-O) Correction

Variable (C-O) corrections are determined by calibration and are related to systematic minor deviations of the measurements from the assumptions underlying the measurement process. They may be instrument specific and/or time/location dependent. The Variable (C-O) must be recorded in the same unit as the observation it refers to.

Variable (C-O) by Instrument Correction (H2,5,4,4):

The norm is to supply the calibration correction to an observation in the form of one Variable (C-O). However, for some systems, notably some ranging systems, the Variable (C-O) is split up into component parts, and expressed as instrument or sensor corrections, often derived from bench calibrations of the sensors. These corrections are commonly supplied in the form of receiver, beacon or transponder delays.

Instrument corrections can be supplied in record H2,5,4,4 when relevant. They should add to the range measured to/from the relevant node and therefore equal minus the instrument delays. When instrument corrections are supplied the Variable (C-O) fields in the H2,5,4,0 records of the affected observations should be left blank. The total variable (C-O) for such a range between node 'A' with instrument 'i' and node 'B' with instrument 'j' is:

(C-O)_{var} = Instr.Corr_i + Instr.Corr_i

Reduction of observations

The general observation reduction equation is:

 $Obs_{reduced} = C/O * \{ Obs_{raw} + (C-O)_{fixed} + (C-O)_{var} \}$

Real Time Correction Changes (References to records in this paragraph modified in version 1.1)

This format allows changes to C-Os and C/Os that occur in real time to be recorded without having to insert a new block of header records. This option is implemented by means of the T2,5,4,1 data records, leaving the relevant fields blank if they don't apply.

Variable (C-O) and/or Scale (C/O) corrections supplied in data records take precedence over the values supplied in header record $H_{2,5,4,0}$ and replace the latter.

A change in e.g. a (C-O) during a line needs to be recorded only once by inserting one T2,5,4,1 record. The new value will be deemed valid until:

- it is changed again by means of a T2,5,4,1 record for a later point in time, or...
- the end of the line is reached.

If the new (C-O) value is still valid at the beginning of the next line, the value will need to be consolidated in the relevant H2,5,4,0 record for the new line.

8.3. Raw GNSS Data Recording

The format provides records for recording raw GNSS data for both a GNSS receiver and the correction data broadcast from an external correction source.

For most surveys, this data is not required and should typically not be recorded unless contractually specified by the client.

If raw GNSS data recording is requested, a complete set of data should be recorded once for each GNSS system (e.g. GPS, GLONASS etc), from a representative receiver providing a fundamental point—such as a vessel position.

9. P2 Header

9.1. P2 Header: Line Definitions

The line definition section in the Common Header allows for the definition of two types of line, Acquisition and Preplot.

An Acquisition Line represents the operation action of acquiring data, whereas the Preplot Line represents the nominal location of the data to be acquired.

For a simple 2D survey, there will be a single acquisition line and a single preplot line.

For 3D marine surveys, there will be a single acquisition line and a variable number of preplot lines, depending on whether the preplot is supplied as a single sail line, per-source lines or perstreamer lines. It is also possible to define an infill line as a single acquisition line shot into multiple preplot lines.

To cater for more complex types, such as 4D marine, the preplot can be defined as either a set of waypoints or as a full set of positions.

The format will also handle other survey types – for instance an OBC Ping Run P2/11 file would record the cable drop location, including depth information, as the preplot line, and could additionally record the nominal vessel track as an additional preplot line.

H2,0,0,0: Acquisition Line Prefix

Field	Description	Data Type	Reference Code	Comments
5	"Line Prefix"	Description		
6	Prefix	Text		

Example

H2,0,0,0,Line Prefix

,CDA-

H2,0,0,1: Acquisition Line Details

Field	Description	Data Type	Reference Code	Comments
5	"Acquisition Line Details"	Description		
6	Acq. Line Reference Number	Integer ACQREF		Optional — see below 1 onwards
7	Line name	Text		
8	Line sequence number	Integer		Optional
9	Line description	Text		Optional

Note: The line sequence number is a sequential number to be allocated to each line in the order it was shot, starting with 1. The line sequence number is unique within the survey, whereas the Acquisition Line Reference Number is a reference number used within the file. The line description should contain information about the type of line, e.g. straight, circle, cycloid, etc.

Example

H2,0,0,1,Acquisition Line Details...,1,T21001P9015,1,Straight

Field	Description	Data Type	Reference Code	Comments
5	"Preplot Record Type Definition"	Description		
6	Preplot Type Reference Number	Integer	PREPLOTTYPEREF	1 onwards
7	Physical Position Reference Number	Integer List	OBJREF	Optional
8	Logical Position Reference Number	Integer List		O for CMP 1 onwards is the logical number.
9	Line Dimension Type	Integer		2 = 2D Survey 3 = 3D Survey 4 = 4D Survey Other values user defined.
10	Line Dimension Description	Text		
11	CRS A Number	Integer	CRSREF	
12	CRS B Number	Integer	CRSREF	
13	Line Type	Integer		1 = Source 2 = Receiver 3 = Other
14	Point Number Format Code	Integer	DATATYPEREF	
15	Point Distance Interval Unit Code	Integer	UNITREF	Blank if the Preplot lines are specified only using point records.
16	Angular Unit Code	Integer	UNITREF	Blank if arc or spiral segments are not defined.
17	Number of Record Extension Fields Recorded Per Position Record	Integer		
18	Record Extension Field Definition	Record Extension Field text string		Optional Standard Record Extension Definition - see Table 5

H2,0,1,0: Preplot Record Type Definition

Field 18 is repeated as required.

Each Preplot Line Coordinates Record provides storage for the position referenced to two CRSs. CRS A will be the projected CRS or a compound CRS encompassing the projected CRS, and CRS B will be the base geographic CRS of CRS A.

Either the Physical Position Reference Number — detailing an exact link to a positioning object defined in the survey summary data — or a Logical Position Reference Number — detailing a non-specific reference such as 1 and 2 for dual sources — needs to be defined.

The format used for the variant point numbers in this and the following records will depend on the value in field 14.

Refer to Table 16 for format-defined record extension identifiers (as input to Field 18).

Preplot Position Record Field Extension Identifiers

Reference Number	Description	Additional Parameter
1	Base Feather	
2	Source ID	
100 onwards	User Defined	

Table 16: Preplot Position Record Field Extension Identifiers

H2,0,1,1: Preplot Record Type Attributes (Record added in version 1.1)

Field	Description	Data Type	Reference Code	Comments
5	Attribute Name	Description		
6	Preplot Type Reference Number	Integer	PREPLOTTYPEREF	
7	Attribute Reference Number	Integer	PPTYPEATTREF	
8	Attribute Value	Variant		
9	Attribute Units	Integer	UNITREF	
10	Attribute Unit Name	Text		

Record may be repeated.

This record is optional.

This record can be used for storing global preplot generation attributes, such as (for a towed streamer survey) number, length, spacing of streamers and receivers per streamer, source line, sail line and CMP line spacing, shot and CMP spacing, run-in and run-out lengths, etc.

Example Preplot Record Type Definition

```
H2,0,1,0,Preplot Record Type Definition...,1,1, ,3,3D Survey,1,2,1,1,1,3,0,
H2,0,1,1,Number of streamers... ,1,1, 8,4,Unity
H2,0,1,1,Length of streamers... ,1,2,6000.0,1,Metre
```

H2,0,2,0: Preplot Line Details

Field	Description	Data Type	Reference Code	Comments
5	"Preplot Line Details"	Description		
6	Preplot Type Reference Number	Integer	PREPLOTTYPEREF	As defined in H2,0,1,0
7	Preplot Line Reference Number	Integer	PREPLOTREF	1 onwards
8	Name	Text		
9	First Point Number	Variant		Format as defined in H2,0,1,0
10	Last Point Number	Variant		Format as defined in H2,0,1,0

The format used for the variant point numbers in this and the following records will depend on the value defined in H2,0,1,0.

Following the definition of a Preplot line using a H2,0,2,0 record, the positions for the line are defined by a combination of the Preplot position records. The following position record types are defined.

- Point Record: For recording all the points
- Line Segment Record: For recording a continuous straight line between two points
- Arc Segment Record: For recording a continuous curved line segment between two points at a continuous arc of curvature
- Spiral Segment Record: For recording a continuous curved line segment between two points where the arc of curvature is varying at a fixed rate.

Field	Description	Data Type	Reference Code	Comments
5	Preplot Line Reference Number	Integer	PREPLOTREF	As defined in H2,0,2,0
6	Segment Number	Integer	PPSECREF	1 onwards
7	Point Number	Variant		Format as defined in H2,0,1,0
8	CRS A Coordinate 1	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
9	CRS A Coordinate 2	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
10	CRS A Coordinate 3	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
11	CRS B Coordinate 1	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
12	CRS B Coordinate 2	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
13	CRS B Coordinate 3	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
14	Record Extension Fields	Additional Field List		The number of items must equal that given in the H2,0,1,0 record

H2,0,2,1: Preplot Line: Single Position Record

Fields 7 onwards can be repeated as required.

Record can be repeated as required.

The position tuple in CRS B is mandatory for the first set of positions in each record, it is optional in the second and subsequent sets of positions.

For lines with multiple segments, such as dog-leg lines, the Segment Number defines the segment to which a point belongs.

Example Preplot Single Position Definition

```
H2,0,2,0,Preplot Line Details ,1,1,P1000,1001,1201
H2,0,2,1,1,1,1001,391194.94,4092809.86,,54.2344345434,-9.2344345434,,
H2,0,2,1,1,1,1002,391194.94,4092834.86,,54.2344345434,-9.2344345434,,
H2,0,2,1,1,1,1003,391194.94,4092859.86,,54.2344345434,-9.2344345434,,
H2,0,2,1,1,1,1004,391194.94,4092884.86,,54.2344345434,-9.2344345434,,
...
H2,0,2,1,1,1,1199,393695.00,4097090.00,,53.2344345434,-8.2344345434,,
H2,0,2,1,1,1,1200,393695.00,4097115.00,,53.2344345434,-8.2344345434,,
```

H2,0,2,1,1,1,1201,393695.00,4097140.00,,53.2344345434,-8.2344345434,,

H2,0,2,2: Preplot Line: Line Segment Record

Field	Description	Data Type	Reference Code	Comments
5	Preplot Line Reference Number	Integer	PREPLOTREF	As defined in H2,0,2,0
6	Segment Number	Integer	PPSECREF	1 onwards
7	Point Number Increment	Variant		Format as defined in H2,0,1,0
8	Point Distance Interval	Variant		Units as defined in H2,0,1,0
9	Point Computation Method	Integer		0 = geographical 1 = grid
10	Start Point Number	Variant		Format as defined in H2,0,1,0
11	Start Point CRS A Coordinate 1	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
12	Start Point CRS A Coordinate 2	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
13	Start Point CRS A Coordinate 3	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
14	Start Point CRS B Coordinate 1	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
15	Start Point CRS B Coordinate 2	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
16	Start Point CRS B Coordinate 3	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
17	End Point Number	Variant		Format as defined in H2,0,1,0
18	End Point CRS A Coordinate 1	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
19	End Point CRS A Coordinate 2	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
20	End Point CRS A Coordinate 3	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
21	End Point CRS B Coordinate 1	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
22	End Point CRS B Coordinate 2	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
23	End Point CRS B Coordinate 3	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
24	Record Extension Fields	Additional Field List		The number of items must equal that given in the H2,0,1,0 record

Record can be repeated as required.

For lines with multiple segments, such as dog-leg lines, the Segment Number defines the segment to which a point belongs.

Example Preplot Line Segment Definition

H2,0,2,0,Preplot Line Details ,1,1,P1000,1001,1201 H2,0,2,2,1,1,1,25,1,1001,391194.94,4092809.86,,54.2344345434,-9.2344345434,,1201,393695.00,4097140.00,,53.2344345434,-8.2344345434,,

Field	Description	Data Type	Reference Code	Comments
5	Preplot Line Reference Number	Integer	PREPLOTREF	As defined in H2,0,2,0
6	Segment Number	Integer	PPSECREF	1 onwards
7	Point Number Increment	Variant		Format as defined in H2,0,1,0
8	Point Distance Interval	Variant		Units as defined in H2,0,1,0
9	Point Computation Method	Integer		0 = geographical 1 = grid
10	Start Point Number	Variant		Format as defined in H2,0,1,0
11	Start Point CRS A Coordinate 1	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
12	Start Point CRS A Coordinate 2	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
13	Start Point CRS A Coordinate 3	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,10 Blank if n/a
14	Start Point CRS B Coordinate 1	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
15	Start Point CRS B Coordinate 2	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
16	Start Point CRS B Coordinate 3	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
17	End Point Number	Variant		Format as defined in H2,0,1,0
18	End Point CRS A Coordinate 1	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
19	End Point CRS A Coordinate 2	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
20	End Point CRS A Coordinate 3	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
21	End Point CRS B Coordinate 1	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
22	End Point CRS B Coordinate 2	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
23	End Point CRS B Coordinate 3	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
24	Centre Point CRS A Coordinate 1	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1

H2,0,2,3: Preplot Line: Arc Segment Record

25	Centre Point CRS A Coordinate 2	Variant	Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
26	Centre Point CRS A Coordinate 3	Variant	Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
27	Angular Distance	Variant	The value of the angle from the Azimuth to first point to the Azimuth of the last point of the Arc, positive to clockwise. Units as defined in H2,0,1,0
28	Record Extension Fields	Additional Field List	The number of items must equal that given in the H2,0,1,0 record

Record can be repeated as required.

The angular distance value may be greater than 360 degrees if the arc represents a path greater than a circle.

For lines with multiple segments, the Segment Number defines the segment to which a point belongs.

Example Preplot Arc Segment Definition

```
H2,0,2,0,Preplot Line Details ,1,1,P1000,1001,1201
H2,0,2,3,,1,1,25,1,1001,391194.94,4092809.86,,54.2344345434,-
9.2344345434,,1201,393695.00,4097140.00,,53.2344345434,-8.2344345434,,
393495.00,4095140.00,,34.333,
```

H2,0,2,4: Preplot Line: Spiral Segment Record

Field	Description	Data Type	Reference Code	Comments
5	Preplot Line Reference Number	Integer	PREPLOTREF	As defined in H2,0,2,0
6	Segment Number	Integer	PPSECREF	1 onwards
7	Point Number Increment	Variant		Format as defined in H2,0,1,0
8	Point Distance Interval	Variant		Units as defined in H2,0,1,0
9	Point Computation Method	Integer		0 = geographical 1 = grid
10	Start Point Number	Variant		Format as defined in H2,0,1,0
11	Start Point CRS A Coordinate 1	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
12	Start Point CRS A Coordinate 2	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
13	Start Point CRS A Coordinate 3	Variant		Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
14	Start Point CRS B Coordinate 1	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
15	Start Point CRS B Coordinate 2	Variant		Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1

16	Start Point CRS B Coordinate 3	Variant	Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
17	End Point Number	Variant	Format as defined in H2,0,1,0
18	End Point CRS A Coordinate 1	Variant	Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
19	End Point CRS A Coordinate 2	Variant	Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
20	End Point CRS A Coordinate 3	Variant	Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
21	End Point CRS B Coordinate 1	Variant	Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
22	End Point CRS B Coordinate 2	Variant	Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1
23	End Point CRS B Coordinate 3	Variant	Format for CRS B as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
24	Centre Point CRS A Coordinate 1	Variant	Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
25	Centre Point CRS A Coordinate 2	Variant	Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1
26	Centre Point CRS A Coordinate 3	Variant	Format for CRS A as listed in H2,0,1,0 and as defined in HC,1,6,1 Blank if n/a
27	Angular Distance	Variant	The value of the angle from the Azimuth to first point to the Azimuth of the last point of the Arc, positive to clockwise. Units as defined in H2,0,1,0
28	Radius Adjustment	Variant	For each circle described in this segment, the radius of the arc is increased (or decreased if the value is negative) by this value
29	Record Extension Fields	Additional Field List	The number of items must equal that given in the H2,0,1,0 record

Example Preplot Spiral Segment Definition

H2,0,2,0,Preplot Line Details ,1,1,P1000,1001,1201 H2,0,2,4,,1,1,25,1,1001,391194.94,4092809.86,,54.2344345434,-9.2344345434,,1201,393695.00,4097140.00,,53.2344345434,-8.2344345434,, 393495.00,4095140.00,,34.333,500,

9.2. P2 Header: Magnetic Variation Definitions

H2,0,3,0: Magnetic Variation Description

Field	Description	Data Type	Reference Code	Comments
5	"Magnetic Variation Strategy"	Description		
6	Description of strategy used for application of magnetic variation	Text		

H2,0,3,1: Magnetic Variation - General Information

Field	Description	Data Type	Reference Code	Comments
5	"Magnetic Variation Definition"	Description		
6	Date for which the Magnetic Variation values are valid	Date		
7	Number of points in grid	Integer		
8	CRS Number	Integer	CRSREF	
9	Source of Magnetic Variation	Text		
10	Magnetic Variation Units	Integer	UNITREF	

H2,0,3,2: Magnetic Variation - Data

Field	Description	Data Type	Reference Code	Comments
5	"Magnetic Variation Data"	Description		
6	Point Number	Integer		
7	Coordinate 1	Variant		Format for CRS as listed in H2,0,3,1 and as defined in HC,1,6,1
8	Coordinate 2	Variant		Format for CRS as listed in H2,0,3,1 and as defined in HC,1,6,1
9	Coordinate 3	Variant		Format for CRS as listed in H2,0,3,1 and as defined in HC,1,6,1 Blank if n/a
10	Magnetic Variation	Variant		Format as defined for the UNITREF listed in H2,0,3,1
11	Yearly Secular change in Magnetic Variation at this point	Variant		Format as defined for the UNITREF listed in H2,0,3,1

Fields 6 onwards can be repeated as required.

Example Magnetic Variation Definition Block

```
H2,0,3,0,Magnetic Variation Strategy...,Single Point Supplied for Survey By Client
H2,0,3,1,Magnetic Variation Definition...,2006:09:05,1,2,IGRF,5
H2,0,3,2,Magnetic Variation Data...,1,64.4716666667,7.521388889,,-0.5,0
```

9.3. P2 Header: Observed Speed of Sound Definitions

H2,0,4,0: Observed Speed of Sound - Definitions

Version history		
Item revised	Version 1.0	Version 1.1
Field 19	Number of Record Extension Fields Recorded for this node	Computation Method
Field 20	Record Extension Field Definition	Number of Record Extension Fields Recorded for this node
Field 21		Record Extension Field Definition

Field	Description	Data Type	Reference Code	Comments
5	"Observed Speed of Sound Definition"	Description		
6	Profile Number	Integer	VELREF	
7	TRS Number	Integer	TRSREF	
8	Time of Observation	Variant		Format as defined for TRS
9	CRS Number	Integer	CRSREF	
10	Coordinate 1	Variant		Format as defined for CRS in HC,1,6,1
11	Coordinate 2	Variant		Format as defined for CRS in HC,1,6,1
12	Coordinate 3	Variant		Format as defined for CRS in HC,1,6,1 Blank if n/a
13	Depth Unit Code	Integer	UNITREF	
14	Velocity Unit Code	Integer	UNITREF	
15	Temperature Unit Code	Integer	UNITREF	
16	Salinity Unit Code	Integer	UNITREF	Blank if n/a
17	Conductivity Unit Code	Integer	UNITREF	Blank if n/a
18	Instrument description	Text		
19	Computation Method	Text		E.g. Chen and Millero, Del Grosso, Direct Reading
20	Number of Record Extension Fields Recorded for this node	Integer		
21	Record Extension Field Definition	Record Extension Field text string		Optional Standard Record Extension Definition - see Table 5

Field 21 may be repeated as required.

Refer to Table 16a for format-defined record extension identifiers (as input to Field 21).

Speed of Sound Profile Extension Field Identifiers

Extension Identifier	Description	Additional Parameter
100 onwards	User Defined	

Table 16a: Speed of Sound Profile Field Extension Identifiers.

H2,0,4,1: Observed Speed of Sound - Profile

Field	Description	Data Type	Reference Code	Comments
5	"Observed Speed of Sound"	Description		
6	Profile Number	Integer	VELREF	
7	Depth	Float		
8	Velocity	Float		
9	Temperature	Float		Blank if n/a
10	Salinity	Float		Blank if n/a
11	Conductivity	Float		Blank if n/a
12	Additional Data Fields	Additional Field List		The number of items must equal that given in the H2,0,4,0 record

Fields 7 onwards may be repeated.

Example Observed Speed of Sound Definition Block

```
H2,0,4,0,Observed Speed of Sound Definition...
,1,1,2000:07:29:11:48:00,2,58.53333333,0.566666667,,1,5,6,7,,Valeport 600-CTD,
Chen and Millero,0,
H2,0,4,1,Observed Speed of Sound
H2,0,4,1,Observed S
```

9.4. P2 Header: Tidal Information

H2,0,5,0: Tidal Correction - Port Definition

Field	Description	Data Type	Reference Code	Comments
5	"Tidal Correction Definition"	Description		
6	Port Number	Integer	TIDALREF	
7	Port Name	Text		
8	Country Code	Text		ISO 3166-1 Alpha-3 Code
9	Tidal Datum CRS Number	Integer	CRSREF	Vertical Datum definition
10	Port Position CRS Number	Integer	CRSREF	
11	Coordinate 1	Variant		Format as defined for CRS in HC,1,6,1
12	Coordinate 2	Variant		Format as defined for CRS in HC,1,6,1

13	Coordinate 3	Variant		Format as defined for CRS in HC,1,6,1 Blank if n/a
14	Time Reference	Integer	TRSREF	
15	Amplitude or Correction Unit Code	Integer	UNITREF	
16	Phase Angle Unit Code	Integer	UNITREF	
17	Speed Unit Code	Integer	UNITREF	
18	Harmonic Mean Value z0	Float		Blank if n/a
19	Comments	Text		Optional
20	Number of Record Extension Fields Recorded for this port	Integer		
21	Record Extension Field Definition	Record Extension Field text string		Optional Standard Record Extension Definition - see Table 5

Field 21 may be repeated as required.

Refer to Table 16b for format-defined record extension identifiers (as input to Field 21).

Tidal Correction Extension Field Identifiers

Extension Identifier	Description	Additional Parameter
100 onwards	User Defined	

Table 16b: Tidal Correction Field Extension Identifiers

H2,0,5,1: Tidal Correction – Harmonic Data

Field	Description	Data Type	Reference Code	Comments
5	"Tidal Correction Harmonic Data"	Description		
6	Port Number	Integer	TIDALREF	
7	Constituent Name	Text		
8	Phase Angle	Float		
9	Amplitude	Float		
10	Speed	Float		
11	Extended Doodson Number (XDO)	Text		Blank if n/a
12	Additional Data Fields	Additional Field List		The number of items must equal that given in the H2,0,5,0 record

Fields 7 onwards may be repeated. Record may be repeated

Field	Description	Data Type	Reference Code	Comments
5	"Tidal Correction Data"	Description		
6	Port Number	Integer	TIDALREF	
7	Time	Variant		Format as defined for TRS listed in H2,0,5,0
8	Correction	Float		
9	Additional Data Fields	Additional Field List		The number of items must equal that given in the H2,0,5,0 record
10	Time Offset	Time		Relative to "Time" Field in Column 7 Blank if n/a
11	Correction	Float		
12	Additional Data Fields	Additional Field List		The number of items must equal that given in the H2,0,5,0 record

H2,0,5,2: Tidal Correction – Correction Data

The Additional Data Block in fields 10 onwards may be repeated. Record may be repeated.

Example Tidal Correction Definition Block

Harmonic Example

```
H2,0,5,0,Tidal Correction Definition...,1,Portsmouth,GBR,2,1,50.772825,-
1.197529,,1,1,3,5,2.879,Data from UK NOC,0,
H2,0,5,1,Tidal Correction Harmonic Data...,1,O1,345.21,0.027,13.9430356,,
H2,0,5,1,Tidal Correction Harmonic Data...,1,K1,113.01,0.087,15.0410686,,
H2,0,5,1,Tidal Correction Harmonic Data...,1,M2,326.66,1.409,28.9841042,,
H2,0,5,1,Tidal Correction Harmonic Data...,1,S2, 13.19,0.423,30.0000000,
```

Correction Data Example

9.5. P2 Header: Vessel Definitions

H2,1,0,0: Vessel Reference Point Definition

Field	Description	Data Type	Reference Code	Comments
5	Vessel Number	Integer	OBJREF	
6	Description of Navigation Reference Point	Text		
7	Vertical Reference Level (VRL)	Integer		1 = Sea Level 2 = Tropical Fresh Water Load Line
8	Description of Vertical Reference Level	Text		
9	Height of VRL above sea level (Delta Draft)	Float		Optional
10	Date of Delta Draft Measurement	Date		Optional
11	Description of Delta Draft Measurement	Text		Optional

H2,1,1,0: Steered Point Definition

Field	Description	Data Type	Reference Code	Comments
5	Vessel Number	Integer	OBJREF	
6	Description of steered point	Text		

H2,1,1,1: Pivot Point Definition

Field	Description	Data Type	Reference Code	Comments
5	Vessel Number	Integer	OBJREF	
6	Across Offset	Float		
7	Along Offset	Float		
8	Above Offset	Float		
9	Description of pivot point	Text		

H2,1,1,2: Shot Reference Point Definition

Field	Description	Data Type	Reference Code	Comments
5	Vessel Number	Integer	OBJREF	
6	Shot Reference Point Number	Integer List	OBJREF	Blank if n/a
7	Description of shot reference point	Text		

The shot reference point can be given as a combination of positions – thus if both OBJREF No 1 and OBJREF No 2 is used, the value can be "1&2".

H2,1,1,3: Streamer Steering Definition

Field	Description	Data Type	Reference Code	Comments
5	Vessel Number	Integer	OBJREF	
6	Streamer Reference Number	Integer List	OBJREF	Blank if no streamer steering
7	Angular Offset Units	Integer	UNITREF	
8	Steering Strategy Description	Text		

H2,1,2,0: Vessel Time System Definition

Field	Description	Data Type	Reference Code	Comments
5	Vessel Number	Integer	OBJREF	
6	TRS Number	Integer	TRSREF	Used for T2,3,x,x

H2,1,3,0: Definition of General Event Data

Field	Description	Data Type	Reference Code	Comments
5	TRS Number	Integer	TRSREF	Used for E2,1,0,0
6	Number of Record Extension Fields Recorded Per E2,1,0,0 record	Integer		
7	Record Extension Field Definition	Record Extension Field text string		Optional Standard Record Extension Definition - see Table 5

Field 7 is repeated as required.

Refer to Table 17 for format-defined record extension identifiers (as input to Field 7).

Shot Event Record Extension Field Identifiers

Extension Identifier	Description	Additional Parameter
1	FFID	
2	Unit Variance	Network Id
3	External Reliability (MDE)	Network Id
4	Degrees of Freedom	Network Id
5	Number of Observations	Network Id
6	Streamer Rotation	Streamer Id
100 onwards	User Defined	

Table 17: Shot Event Data Field Extension Identifiers
Example Vessel Definition Records

```
H2,1,0,0,1,Antenna at Sea Level,1,Sea Level,0,,
H2,1,1,0,1,NAVIGATION REFERENCE POINT
H2,1,1,1,1,0,0,0,NRP
H2,1,1,2,1,2&3,Mean Source Position
H2,1,1,3,1,,,No Streamer Steering
H2,1,2,0,1,1
H2,1,3,0,1,0,
```

9.6. P2 Header: Streamer Definitions

H2,2,0,0: Streamer Component Type Definitions

Field	Description	Data Type	Reference Code	Comments
5	Component Identifier	Integer	STRMCOMPREF	
6	Component Name	Text		
7	Number of Receivers	Integer		Optional if not applicable
8	Offset from Start of Component to Centre of First Group	Float		Optional if not applicable
9	Load Unit Code	Integer	UNITREF	Blank for solid inserts
10	Length Unit Code	Integer	UNITREF	
11	Stretch Factor	Float		Blank for solid inserts
12	Nominal Load	Float		Blank for solid inserts
13	Length at Load	Float		
14	Load	Float		Blank for solid inserts

Fields 13 & 14 can be repeated for multiple stretch definitions.

If the Streamer component is a solid insert such as a Module then the load unit code in field 9 should be blank, as should the stretch factor and nominal load in fields 11 and 12, and the Module length set in field 13 should have the Load in field 14 also left blank.

H2,2,0,1: Receiver Record Type Definition (Record added in version 1.1)

Field	Description	Data Type	Reference Code	Comments
5	"Receiver Record Type Definition"	Description		
6	Receiver Group Number Format Code	Integer	DATATYPEREF	

H2,2,1,0: Streamer Layout Definition

Field	Description	Data Type	Reference Code	Comments
5	Streamer Reference Number	Integer	OBJREF	
6	Local Offset of beginning of first component	Float		
7	Component Identifier	Integer List	STRMCOMPREF	

H2,2,2,0: Seismic Receiver Group Definitions

Version history		
Item revised	Version 1.0	Version 1.1
Field 6 Data Type	Integer	Variant
Field 10 Data Type	Integer	Variant
Field 16 Data Type	Integer List	Integer
Field 16	Receiver Type	Receiver Type Reference Number

Field	Description	Data Type	Reference Code	Comments
5	Streamer Reference Number	Integer	OBJREF	
6	Group Number of first seismic receiver group in regular section	Variant	GROUPREF	(Field modified in version 1.1)
7	Across Offset of centre of first receiver group	Float		
8	Along Offset of centre of first receiver group	Float		
9	Above Offset of centre of first receiver group	Float		
10	Group Number of last seismic receiver group in regular section	Variant	GROUPREF	(Field modified in version 1.1)
11	Across Offset of centre of last receiver group	Float		
12	Along Offset of centre of last receiver group	Float		
13	Above Offset of centre of last receiver group	Float		
14	Number of seismic receiver groups in section	Integer		
15	Distance between centres of receiver groups	Float List		
16	Receiver Type Reference Number	Integer	OBJREF[RX]	(Field modified in version 1.1)

Fields 6 onwards may be repeated.

Note: Irregular Group Spacing can be handled by recording the distance between groups as a list in field 15, as shown below. If the number of items in the list is less than the number of groups specified in the record then the pattern is assumed to repeat.

Example Streamer Definition Records

Irregular Group Spacing:

```
H2,2,2,0,10,217,0.0,-2704.2,0.0,224,0.0,-2791.7,0.0,6,25.0&25.0&12.5&12.5&12.5&12.5,1
H2,2,2,0,10,225,0.0,-2804.2,0.0,232,0.0,-2891.8,0.0,5,25.0&25.0&25.0&12.5&12.5,1
H2,2,2,0,10,233,0.0,-2904.3,0.0,240,0.0,-2991.8,0.0,4,27.5&22.5&27.5&22.5,1
```

9.7. P2 Header: Gun Array Definitions

H2,3,0,0: Gun Array Definition

Field	Description	Data Type	Reference Code	Comments
5	Gun Array Reference Number	Integer	OBJREF	
6	Gun Volume Units	Integer	UNITREF	
7	Number of Record Extension Fields Recorded	Integer		
8	Record Extension Field Definition	Record Extension Field text string		Optional Standard Record Extension Definition - see Table 5

Refer to Table 17a for format-defined record extension field identifiers (as input to Field 8).

Gun Array Extension Field Identifiers

Extension Identifier	Description	Additional Parameter
100 onwards	User Defined	

Table 17a: Gun Array Field Extension Identifiers

H2,3,1,0: Individual Gun Definition

Field	Description	Data Type	Reference Code	Comments
5	Location Reference Number	Integer	OBJREF	Can be either a gun array or a gun string object
6	Gun reference number	Integer	GUNREF	
7	Gun Serial Number	Text		Optional
8	Across Offset	Float		
9	Along Offset	Float		
10	Above Offset	Float		
11	Gun volume	Variant		Format as defined for Units defined in H2,3,0,0

Fields 6 onwards may be repeated.

Example Gun Array Definition Records

H2,3,0,0,301,12,0, H2,3,1,0,301,1,345474,-10.0,-2.5,-6.0,2000

9.8. P2 Header: Survey Network Definitions

H2,5,0,0: Observation Type Definition

Field	Description	Data Type	Reference Code	Comments	
5	Observation Type	Integer	OBSTYPEREF		
6	Observation Type Name	Text			
7	Description	Text			

OBSTYPEREF Codes

Version history		
Item revised	Version 1.0	Version 1.1
Code 25	Horizontal Fin Angle	Lateral Object Control Fin Angle
Code 26	Vertical Fin Angle	Vertical Object Control Fin Angle

Code	Description	Type Flag
1	3D Range	0 = Instantaneous Measurement 1 = One Way Meas. 2 = Two Way Meas.
2	Hyperbolic	1 = Formula 1 (usually phase difference measurement) 2 = Formula 2 (usually time difference measurement)
4	Pseudo Range	1 = common clock bias 2 = clock bias per pseudo-range
6	Differential Observation	
7	Composite Observation	
8	Horizontal Angle	
9	Horizontal Direction	
10	Horizontal Magnetic Bearing	
11	Horizontal True Bearing	
12	Horizontal Differential True Bearing	
13	Horizontal Range	0 = Instantaneous Measurement 1 = One Way Meas. 2 = Two Way Meas.
14	Speed of Sound in Water	
15	Temperature	
16	Time	
17	Time Difference	
18	Water Relative Speed	

19	Ground Relative Speed	
20	Current Speed	
21	Water Depth relative to Sea Level	0 = depths not heave compensated 1 = depths heave compensated
22	Water Depth relative to Transducer	0 = depths not heave compensated 1 = depths heave compensated
23	Pitch Angle	0 = positive bow up 1 = positive bow down
24	Roll Angle	0 = positive heeling to starboard 1 = positive heeling to port
25	Lateral Object Control Fin Angle	0 = positive to starboard 1 = positive to port
26	Vertical Object Control Fin Angle	0 = positive bow up 1 = positive bow down
27	Heave	
28	Vertical Angle	
29	Signal to Noise Ratio	
30	Salinity	
31	Conductivity	
32	Tension	
33	Pressure	
34	Horizontal Force	0 = positive to starboard 1 = positive to port
35	Vertical Force	0 = positive up 1 = positive down
36	Gravity	
37	Wind Speed	
38	Wind Direction	
39	Depth relative to Sea Level	
100 onwards	User Defined	

Table 18: OBSTYPEREF Codes

Example Observation Type Definition Block

```
H2,5,0,0, 1,3D Range,Used by Acoustic Logging
H2,5,0,0,10,Magnetic Bearing,Used by Streamer Compass Logging
H2,5,0,0,11,True Bearing,Used by Gyro and rGPS Logging
H2,5,0,0,13,Horizontal Range,Used by rGPS Logging
H2,5,0,0,21,Depth below Sea Level,Used by Streamer and Gun Depth Logging
H2,5,0,0,22,Depth below Transducer,Used by Echo Sounder Logging
H2,5,0,0,23,Pitch,Used by PRH Logging
H2,5,0,0,24,Roll,Used by PRH Logging
H2,5,0,0,27,Heave,Used by PRH Logging
```

H2,5,1,0: Positioning System Definition

Field	Description	Data Type	Reference Code	Comments
5	Positioning system identifier	Integer	SYSREF	
6	Positioning system description	Text		

Example Positioning System Definition Block

H2,5,1,0, 6,GYRO_1000b
H2,5,1,0, 2,GYR0_1000s
H2,5,1,0,15,SEATRACK_SPARE
H2,5,1,0, 7,SEATRACK
H2,5,1,0, 3,SIPS2
H2,5,1,0, 9,LASER
H2,5,1,0,16,Echo Sounders
H2,5,1,0,17,Pitch Roll Heave Sensors
H2,5,1,0,18,Streamer Compasses
H2,5,1,0,19,Streamer Depths
H2,5,1,0,20,Gun Depths
H2,5,1,0,21,Field Derived Positions
H2,5,1,0,22,SeaDiff Primary
H2,5,1,0,23,SPOT
H2,5,1,0,24,SEADIFF V7.02

H2,5,2,0: Node Definition (fixed locations)

Field	Description	Data Type	Reference Code	Comments
5	Node Number	Integer	OBJREF [NODE]	
6	Name	Text		
7	Short Name	Text	OBJNAME	
8	CRS Number	Integer	CRSREF	
9	Coordinate 1	Variant		Format as defined for CRS in HC,1,6,1
10	Coordinate 2	Variant		Format as defined for CRS in HC,1,6,1
11	Coordinate 3	Variant		Format as defined for CRS in HC,1,6,1

Example Fixed Node Definition Block

H2,5,2,0,76,Reference Station 571,RS571,3,57.199000000,-2.092000000,102 H2,5,2,0,78,Reference Station 580,RS580,3,58.811000000,5.673000000,126.5 H2,5,2,0,24,Reference Station 530,RS530,3,52.691732500,8.917972500,82.03 H2,5,2,0,80,Reference Station 620,RS620,3,62.011000000,-6.772000000,92.4 H2,5,2,0,81,Reference Station 630,RS630,3,63.683000000,9.589000000,73.4 H2,5,2,0,82,Reference Station 521,RS521,3,52.371000000,4.672000000,50.6

Field	Description	Data Type	Reference Code	Comments
5	Node Number	Integer	OBJREF [NODE]	
6	Name	Text		
7	Short Name	Text	OBJNAME	
8	Serial Number	Text		May be blank if the node has no serial number — for example a node representing a streamer CNG location
9	Located on: Ref. Number	Integer	OBJREF	
10	Across Offset	Float		
11	Along Offset	Float		
12	Above Offset	Float		
13	Node Type	Integer		 1 = The node physically exists e.g. an acoustic sensor. 2 = The node is virtual e.g. the node represents a CNG position.
14	Positioning System Identifier	Integer List	SYSREF	Blank if the node is virtual

H2,5,3,0: Node Definition (non-fixed locations)

Example Non-Fixed Node Definition Block

```
H2,5,3,0,113,Simrad EA500 38KHz,V01E01,,1,0.3,21.2,-5,1,16
H2,5,3,0,114,Simrad EA500 12KHz,V01E02,,1,-0.2,21.2,-5,1,16
H2,5,3,0,115,TSS DMS-05,V01P01,,1,0,0,0,1,16
H2,5,3,0,116,Compass S01C01,S01C01,16508,21,0,100.2,0,1,18
H2,5,3,0,117,Compass S01C02,S01C02,17397,21,0,-12.7,0,1,18
H2,5,3,0,118,Compass S01C03,S01C03,17685,21,0,-213.2,0,1,18
H2,5,3,0,119,Compass S01C04,S01C04,22397,21,0,-513.9,0,1,18
H2,5,3,0,120,CNG Position,S01CNG,,21,0,0,0,2,
```

H2,5,4,0: Observation Definition

Field	Description	Data Type	Reference Code	Comments
5	Observation Type	Integer	OBSTYPEREF	
6	Observation Type Flag	Integer		See definition of observation type
7	Observation Source Type Flag	Integer	OBSDATATYPE	1 = Observed 2 = Baseline
8	Observation Identifier	Integer	OBSID	
9	Observation Description	Text		
10	"At" Object Ref. Number	Integer	OBJREF	
11	"At" Object Sub Item	Integer	GROUPREF or GUNREF	Blank if n/a
12	"To" Object #1 Ref. Number	Integer	OBJREF	Blank if n/a
13	"To" Object #1 Sub Item	Integer	GROUPREF or GUNREF	Blank if n/a
14	"To" Object #2 Ref. Number	Integer	OBJREF	Blank if n/a
15	"To" Object #2 Sub Item	Integer	GROUPREF or GUNREF	Blank if n/a
16	Measurement Unit Code	Integer	UNITREF	
17	Time Reference System Code	Integer	TRSREF	
18	Positioning System Identifier	Integer	SYSREF	
19	Propagation Speed used	Float		(metres/sec) Blank if n/a
20	Calibrated Propagation Speed	Float		(metres/sec) Blank if n/a
21	Scale Factor	Float		
22	Fixed System (C-O)	Float		
23	Variable (C-O)	Float		
24	A Priori Standard Deviation	Float		
25	Related Observation Ids	Integer List	OBSID	Blank if n/a
26	Number of Record Extension Fields Recorded Per Observation Record	Integer		
27	Record Extension Field Definition	Record Extension Field text string		Optional Standard Record Extension Definition - see Table 5

Field 27 is repeated as required.

For an observation that has a direct relationship with another observation, such as an RGPS range and bearing, the "Related Observation Id" should indicate the observation with which the relationship exists.

Observations for individual receivers or guns can be defined using the "Object Sub Item" field.

The Observation Source Type Flag in Field 7 allows for the definition of baselines (nominal or manual observations). These baseline ranges can be used to define any logical towing arrangement.

Refer to Table 19 for format-defined record extension field identifiers (as input to Field 27).

Extension Identifier	Description	Additional Parameter
1	General Measurement Status	
2	General Measurement Quality	
100 onwards	User Defined	

Observation Data Additional Extension Field Identifiers

Table 19: Observation Data Field Extension Identifiers

H2,5,4,1: Observation Definition – Additional Definition

Field	Description	Data Type	Reference Code	Comments
5	Observation Identifier	Integer	OBSID	
6	Lanewidth on Baseline or Frequency	Float		
7	Defined Length Unit	Integer	UNITREF	
8	Lanewidth or Frequency?	Integer		0 = lanewidth on baseline 1 = comparison frequency

This record need only be recorded for observations for which it has relevance.

H2,5,4,2: Differential Observation - follow up record

Field	Description	Data Type	Reference Code	Comments
5	Differential Observation Identifier	Integer	OBSID	
6	Observation 1 Identifier	Integer	OBSID	
7	Observation 2 Identifier	Integer	OBSID	
8	Differential Observation Description	Text		

H2,5,4,3: Composite Range – follow up record

Field	Description	Data Type	Reference Code	Comments
5	Observation Identifier	Integer	OBSID	
6	"To" Node Identifier	Integer	OBJREF [NODE]	
7	Positive (addition) or negative (subtraction)?	Integer		0 = negative range section 1 = positive range section

H2,5,4,4: Instrument Correction

Field	Description	Data Type	Reference Code	Comments
5	Node Identifier	Integer	OBJREF[NODE]	
6	Positioning System Identifier	Integer	SYSREF	
7	Instrument Correction	Float		
8	Instrument Description (serial number, etc)	Text		

Example Observation Definition Blocks

Echo Sounder

H2,5,4,0,22,0,1,834,SIMRAD EA500 38KHz, 1,,,,,1,2,16,1500,1485.72,,,,1,,0, H2,5,4,0,22,0,1,835,SIMRAD EA500 120KHz, 1,,,,,1,2,16,1500,1485.72,,,,1,,0,

Pitch, Roll, Heave

H2,5,4,0,23,0,1,836,TSS_GEN, 1,,,,,2,2,17,,,,,1,837&838,0, H2,5,4,0,24,0,1,837,TSS_GEN, 1,,,,2,2,17,,,,1,836&838,0, H2,5,4,0,25,0,1,838,TSS_GEN, 1,,,,1,2,17,,,,,1,836&837,0,

Streamer Compass

```
H2,5,4,0,10,,1,839,S01C01, 116,,,,,2,2,18,,,,,1,,0,
H2,5,4,0,10,,1,840,S01C02, 117,,,,2,2,18,,,,,1,,0,
H2,5,4,0,10,,1,841,S01C03, 118,,,,2,2,18,,,,,1,,0,
H2,5,4,0,10,,1,842,S01C04, 119,,,,2,2,18,,,,,1,,0,
H2,5,4,0,10,,1,843,S01C05, 120,,,,2,2,18,,,,,1,,0,
```

Streamer Depth

```
H2,5,4,0,39,,1,852,S01D01, 216,,,,,1,2,19,,,,,1,0,
H2,5,4,0,39,,1,853,S01D02, 217,,,,1,2,19,,,,,1,0,
H2,5,4,0,39,,1,854,S01D03, 218,,,,1,2,19,,,,1,0,
H2,5,4,0,39,,1,855,S01D04, 219,,,,1,2,19,,,,,1,0,
```

Gyro

H2,5,4,0,11,,1,649,V1GY2, 10,,,,,2,2,6,,,1,2.64,0,0.1,,0, H2,5,4,0,11,,1,648,V1GY1, 10,,,,2,2,2,2,,,1,0.24,0,0.1,,0,

rGPS

H2,5,4,0,13,1,1,65,V1R2-G2R2 , 40,,106,,,,1,2,15,,,1,0,0,2,66,0, H2,5,4,0,11, ,1,66,V1R2-G2R2B, 40,,106,,,2,2,15,,,1,0,0,0.4,65,0, H2,5,4,0,13,1,1,35,V1R1-G2R1 , 32,,105,,,1,2,7,,,1,0,0,2,36,0, H2,5,4,0,11, ,1,36,V1R1-G2R1B, 32,,105,,,2,2,7,,,1,0,0,0.4,35,0,

Acoustic

H2,5,4,0,1,1,1,532,V1T1-S5T1, 83,, 91,,,,1,2,1,1500.44,,1,0,0,0.47,,0, H2,5,4,0,1,1,1,531,V1T2-S5T1, 41,, 91,,,,1,2,1,1500.44,,1,0,0,0.47,,0, H2,5,4,0,1,1,1,599,V1T1-S6T1, 83,, 59,,,,1,2,1,1500.44,,1,0,0,0.47,,0, H2,5,4,0,1,1,1,598,V1T2-S6T1, 41,, 59,,,,1,2,1,1500.44,,1,0,0,0.47,,0, H2,5,4,0,1,1,1, 81,V1T1-S1T1, 83,, 23,,,1,2,1,1500.44,,1,0,0,0.47,,0,

Field	Description	Data Type	Reference Code	Comments
5	Position Observation Type	Integer		1 = Externally Observed 2 = Internally Computed
6	Observation Identifier	Integer	OBSID	
7	Observation Description	Text		
8	"At" Object Identifier	Integer	OBJREF	
9	Relative or Absolute Position Flag	Integer		0 = absolute position 1 = relative position
10	"Relative" Object Identifier	Integer	OBJREF	Mandatory for a Relative Position
11	Positioning System Identifier	Integer	SYSREF	
12	CRS Number	Integer	CRSREF	
13	TRS Number	Integer	TRSREF	
14	Confidence Level for Quality Measures	Float		Percent — e.g. "99"
15	Additional Information on Quality Values	Text		Optional
16	Error Ellipse Distance Units	Integer	UNITREF	
17	Error Ellipse Angle Units	Integer	UNITREF	
18	Number of Record Extension Fields Recorded Per Observation Record	Integer		
19	Record Extension Field Definition	Record Extension Field text string		Optional Standard Record Extension Definition - see Table 5

H2,5,5,0: Position Observation Definition

Field 19 is repeated as required.

An externally observed position is a position received by the vessel from an external source, such as a satellite receiver. An internally computed position is a position computed by the positioning processes running on the vessel, such as a network node position.

Refer to Table 20 for format-defined record extension field identifiers (input to Field 19).

Position Data Record Extension Field Identifiers

Extension Identifier	Description	Additional Parameter		
1	Standard Deviation of Coordinate 1			
2	Standard Deviation of Coordinate 2			
3	Standard Deviation of Coordinate 3			
4	GDOP			
5	PDOP			
6	HDOP			
7	TDOP			
8	VDOP			
9	Age of Correction			
10	Number of Satellites Tracked			
11	Number of Reference Stations Used			
12	External Reliability (MDE)			
13	Variance Coordinate 1			
14	Variance Coordinate 2			
15	Variance Coordinate 3			
16	Covariance Coordinate 1 Coordinate 2			
17	Fix Status Code			
18	Unit Variance			
19	Course Made Good			
20	Degrees of Freedom			
21	Number of Observations			
100 onwards	User Defined			

Table 20: Position Data Field Extension Identifiers

Example Observation Definition Blocks

External Position

```
H2,5,5,0,1,1089,FUGRO,29,0,,22,2,1,95,Absolute Error Ellipses,1,3,1,5;;PDOP;4
H2,5,5,0,1,1090,FUGRO,30,0,,23,2,1,95,Absolute Error Ellipses,1,3,1,5;;PDOP;4
H2,5,5,0,1,1091,FUGRO,31,0,,24,2,1,95,Absolute Error Ellipses,1,3,1,5;;PDOP;4
```

Internal Position

```
H2,5,5,0,2,1003,V1 ,10,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1015,G1 ,20,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1020,G2 ,25,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1025,S1 ,12,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1026,S1T1,23,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1027,S1T2,27,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1028,S1T3,45,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1029,S1T4,47,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1030,S1T5,48,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
H2,5,5,0,2,1031,TB1 ,13,0,,21,1,1,99,Absolute Error Ellipses,1,3,1,19;;CMG;2
```

9.9. P2 Header: GNSS Definitions

H2,6,0,0: GNSS System Description

Field	Description	Data Type	Reference Code	Comments
5	System Reference Number	Integer	SATSYSREF	
6	Satellite System Type	Integer		1 = GPS 2 = Glonass 3 = Galileo 4 onwards = User Defined
7	External Correction Flag	Integer		0 = autonomous 1 = externally corrected
8	Name	Text		
9	External Correction System Operator	Text		Blank if n/a
10	External Correction System Name	Text		Blank if n/a
11	Software Description	Text		
12	Software Version Number	Text		
13	Any Additional Information	Text		Optional

Example GNSS System Description Records

H2,6,0,0,1,1,1,V1G1,FUGRO,FUGRO,SeaDiff Primary,10.03, H2,6,0,0,2,1,1,V1G2,FUGRO,FUGRO,SPOT,12.04, H2,6,0,0,3,1,1,V1G3,FUGRO,FUGRO,SEADIFF,7.02,

Field	Description	Data Type	Reference Code	Comments
5	System Reference Number	Integer	SATSYSREF	
6	Reference Station Number	Integer	REFSTN	
7	Reference Station Name	Name		
8	CRS Number	Integer	CRSREF	
9	Coordinate 1	Variant		Format as defined for CRS in HC,1,6,1
10	Coordinate 2	Variant		Format as defined for CRS in HC,1,6,1
11	Coordinate 3	Variant		Format as defined for CRS in HC,1,6,1
12	Description	Text		Optional

H2,6,1,0: Definition of Differential Reference Stations

Example Definition of Differential Reference Stations Records

```
H2,6,1,0,1,571,Stn 571,3,57.199000000,-2.092000000,102,
H2,6,1,0,1,580,Stn 580,3,58.811000000,5.673000000,126.5,
H2,6,1,0,1,530,Stn 530,3,52.691732500,8.917972500,82.03,
H2,6,1,0,1,620,Stn 620,3,62.011000000,-6.772000000,92.4,
H2,6,1,0,1,630,Stn 630,3,63.683000000,9.589000000,73.4,
H2,6,1,0,1,521,Stn 521,3,52.371000000,4.672000000,50.6,
```

H2,6,2,0: GNSS Receiver Definition

Field	Description	Data Type	Reference Code	Comments
5	System Reference Number	Integer	SATSYSREF	
6	"At" Node Identifier	Integer	OBJREF [NODE]	
7	Receiver Number	Integer	RXREF	
8	Receiver Name	Text		
9	Receiver Description	Text		
10	Any Additional Information	Text		Optional

Example GNSS Receiver Definition Records

H2,6,2,0,1,29,1,FUGRO,SeaDiff Primary, H2,6,2,0,2,30,2,FUGRO,Spot, H2,6,2,0,3,31,3,FUGRO,SeaDiff Spare,

Field	Description	Data Type	Reference Code	Comments
5	System Reference Number	Integer	SATSYSREF	
6	Receiver Number	Integer	RXREF	
7	Time Reference System Code	Integer	TRSREF	
8	Raw Data Reference	Integer		
9	Data Format Description	Text		
10	Data Format Version	Text		
11	Data Type Description	Text		
12	Data Format Type	Integer		1 = ASCII 2 = Binary

H2,6,5,0: GNSS Receiver Raw Data Recording Definition

Record may be repeated if multiple data streams are recorded.

Binary Format Data is written as a two-byte Hexadecimal Text Representation of the Binary Byte values – so a binary value of zero is written as "00", and 255 as "FF".

H2,6,5,1: GNSS Receiver Raw Data - Header

Field	Description	Data Type	Reference Code	Comments
5	System Reference Number	Integer	SATSYSREF	
6	Receiver Number	Integer	RXREF	
7	Raw Data Reference	Integer		
8	Time of Receipt	Variant		
9	Data	Text		

As the data field is received from an external, uncontrolled source, it is allowed to contain reserved characters. As this field is at the end of the record any reserved characters will not affect the format integrity.

Example GNSS Receiver Raw Data Recording Definition Records

H2,6,5,0,1,29,1,1,RINEX,2.10,	OBSERVATION 1	DATA,1						
H2,6,5,1,1,29,1,980860814.0,	2.10		OBSERVA	TION D.	ATA	G (GPS)		RINEX VERSION / TYPE
H2,6,5,1,1,29,1,980860814.0,S	eaDiff07.02		On Vess	el Rx		2010110	3 15:39:28UT	CPGM / RUN BY / DATE
H2,6,5,1,1,29,1,980860814.0,0	utput from o	nboard	receive	r				COMMENT
H2,6,5,1,1,29,1,980860814.0,4	635120799		TRIMBLE	NETRS		1.3-0		REC # / TYPE / VERS
H2,6,5,1,1,29,1,980860814.0,6	0104339		TRM4124	9.00	NONE	2		ANT # / TYPE
H2,6,5,1,1,29,1,980860814.0,	-113402.186	5 -5504	4362.839	4 320	9404.37	787		APPROX POSITION XYZ
H2,6,5,1,1,29,1,980860814.0,	0.000)	0.000	0	0.00	000		ANTENNA: DELTA H/E/N
H2,6,5,1,1,29,1,980860814.0,	1 1							WAVELENGTH FACT L1/2
H2,6,5,1,1,29,1,980860814.0,	7 L1	L2	C1	P2	P1	S1 S	2	# / TYPES OF OBSERV
H2,6,5,1,1,29,1,980860814.0,	1.0000							INTERVAL
H2,6,5,1,1,29,1,980860814.0,	2010 11	3	0	0	0.0000	0000	GPS	TIME OF FIRST OBS
H2,6,5,1,1,29,1,980860814.0,								END OF HEADER

Field	Description	Data Type	Reference Code	Comments
5	Correction Source Identifier		Integer	CSREF
6	Correction Source Short Name	Text		
7	CRS Number	Integer	CRSREF	
8	Time Reference System Number	Integer	TRSREF	
9	Coordinate 1	Variant		Format as defined for CRS in HC,1,6,1
10	Coordinate 2	Variant		Format as defined for CRS in HC,1,6,1
11	Coordinate 3	Variant		Format as defined for CRS in HC,1,6,1
12	DCS System Operator	Text		
13	DCS Component Name	Text		
14	DCS Component Description	Text		

H2,6,6,1: Correction Source Raw Data Recording Definition

Field	Description	Data Type	Reference Code	Comments
5	Correction Source Identifier	Integer	CSREF	
6	Correction Source Raw Data Reference	Integer		
7	Data Format Description	Text		
8	Data Format Version	Text		
9	Data Type Description	Text		
10	Data Format Type	Integer		1 = ASCII 2 = Binary

Record may be repeated if multiple data streams are recorded.

Binary Format Data is written as a two-byte Hexadecimal Text Representation of the Binary Byte values – so a binary value of zero is written as "00", and 255 as "FF"

H2,6,6,2: Correction Source Raw Data - Header

Field	Description	Data Type	Reference Code	Comments
5	Correction Source Identifier	Integer	CSREF	
6	Correction Source Raw Data Reference	Integer		
7	Time of Receipt	Variant		
8	Data	Text		

Example Correction Source Raw Data Recording Definition Records

```
H2,6,6,0,1,Stn 571,3,1,57.198978889,-2.092290000,102,Fugro,Starfix,Diff Correction Network
H2,6,6,1,1,30,RTCM,2.1,Corrections via VHF Radio,2
H2,6,6,2,1,30,980860814.0,3F436652D35A6423B3453466B454B1A2B3C4D567890
H2,6,6,2,1,30,980860815.0,7453545F452D35A64H23B3456B454B4531A2B3C4D567890
```

10. P2 Data Records

10.1. General Event Data

E2,1,0,0: General Event Data

Field	Description	Data Type	Reference Code	Comments
5	Acquisition Line Reference Number	Integer	ACQREF	
6	Preplot Line Reference Number	Integer	PREPLOTREF	
7	Acquisition Point Number	Variant		Format as defined in H2,0,1,0
8	Preplot Point Number	Variant		Format as defined in H2,0,1,0
9	Time	Variant		Format as defined for TRS listed in H2,1,3,0 and as defined in HC,1,2,0
10	Additional Data Fields	Additional Field List		The number of items must equal that given in the H2,1,3,0 record

Example General Event Data

E2,1,0,0,1,1,1000,1000,2010:02:04:15:46:46.00, E2,1,0,0,1,1,1001,1001,2010:02:04:15:46:52.10, E2,1,0,0,1,1,1002,1002,2010:02:04:15:46:58.10, E2,1,0,0,1,1,1003,1003,2010:02:04:15:47:04.20, E2,1,0,0,1,1,1004,1004,2010:02:04:15:47:10.20, E2,1,0,0,1,1,1005,1005,2010:02:04:15:47:16.30, E2,1,0,0,1,1,1006,1006,2010:02:04:15:47:22.40, E2,1,0,0,1,1,1007,1007,2010:02:04:15:47:28.50,

E2,1,0,1: Event Attribute Data (Record added in version 1.1)

Field	Description	Data Type	Reference Code	Comments
5	Acquisition Line Reference Number	Integer	ACQREF	
6	Preplot Line Reference Number	Integer	PREPLOTREF	
7	Acquisition Point Number	Variant		Format as defined in HC,2,1,3
8	Preplot Point Number	Variant		Format as defined in H2,0,1,0
9	Event Index Number	Integer		
10	Time	Variant		Format for TRS as listed in HC,2,1,3 and as defined in HC,1,2,0
11	System Reference Number	Integer	PRODSYSREF	
12	Attribute Record Type number	Integer	PSATTTYPEREF	
13	Additional Data Fields	Additional Field List		The number of items must equal that given in the HC,2,1,3 record

Example Event Attribute Records

HC,2,1,3,Attribute Record Type Definition,2,1,1,1,3,2;1;Network Unit Variance ;4,4;1;Network Degrees of Freedom;4,7;1;Misclosure;1

E2,1,0,1,1,1,1001,1001,2010:02:04:15:46:46.00,2,1,1.01;3444;3.23 E2,1,0,1,1,1,1002,1002,2010:02:04:15:46:58.10,2,1,1.11;3444;3.24 E2,1,0,1,1,1,1003,1003,2010:02:04:15:47:04.20,2,1,1.06;3445;3.43 E2,1,0,1,1,1,1004,1004,2010:02:04:15:47:10.20,2,1,1.31;3445;3.76 E2,1,0,1,1,1,1005,1005,2010:02:04:15:47:16.30,2,1,1.22;3445;3.28 E2,1,0,1,1,1,1006,1006,2010:02:04:15:47:22.40,2,1,1.08;3444;3.29 E2,1,0,1,1,1,1007,1007,2010:02:04:15:47:28.50,2,1,1.11;3444;3.29

10.2. Time-related Event Data

T2,0,5,2: Tidal Correction – Realtime Correction Data

Field	Description	Data Type	Reference Code	Comments
5	Port Number	Integer	TIDALREF	
6	Time	Variant		Format as defined for TRS listed in H2,0,5,0
7	Correction	Float		
8	Additional Data Fields	Additional Field List		The number of items must equal that given in the H2,0,5,0 record

Fields 6 onwards may be repeated.

Example Tidal Correction Realtime Data Block

T2,0,5,2,1,2010:02:04:00:00:00.0,1.2, T2,0,5,2,1,2010:02:04:01:00:00.0,1.2, T2,0,5,2,1,2010:02:04:01:00:00.0,1.2,

T2,1,1,0: Auxiliary Seismic Channel Data

Version history		
Item revised	Version 1.0	Version 1.1
Field 5 Reference Code	RECSYSREF	PRODSYSREF
Field 6	Channel Reference Number	Group Number
Field 7	Time Observed	Channel Reference Number
Field 8	Data Value	Time Observed
Field 9	Relative Time	Data Value
Field 10	Data Value	Relative Time
Field 11		Data Value

Field	Description	Data Type	Reference Code	Comments
5	Recording System Ref. Number	Integer	PRODSYSREF	(Field modified in version 1.1)
6	Group Number	Integer	AUXGROUPREF	Optional if not defined in HC,2,1,2 (Field added in version 1.1)
7	Channel Reference Number	Integer	AUXREF	
8	Time Observed	Variant		As defined in HC,2,1,2
9	Data Value	Variant		As defined in HC,2,1,2
10	Relative Time	Float		Milliseconds, relative to field 8
11	Data Value	Variant		

Fields 10 onwards may be repeated.

Anything that is recorded in an aux channel could be recorded in this record, be that a seismic trace (which could be put into P2 for First Break positioning) or any other value which is recorded and written by the recording system to SEGD or SEGY.

Example Auxiliary Seismic Channel Data

T2,1,1,0,1,1,1,2010:02:04:15:46:46.00,45.4,2.0,45.5,4.0,46.5

T2,1,1,2: Steered Streamer Reference Update

Version history				
Item revised	Version 1.0	Version 1.1		
Field 7 Data Type	Float	Variant		

Field	Description	Data Type	Reference Code	Comments
5	Streamer Reference Number	Integer List	OBJREF	
6	Time of Update	Variant		Format as defined for TRS listed in H2,1,2,0
7	Angular Offset	Variant		Positive Clockwise from Heading Format as defined in H2,1,1,3:Streamer Steering Definition, field 7 (Angular Offset Units) (Field modified in version 1.1)
8	Description of Update	Text		

If streamer steering is disabled this should be stated in the Description of Update field, and the Angular Offset set to zero.

Example Steered Streamer Update

T2,1,1,2,21,2010:02:04:15:46:46.00,1.22,Steering for Infill

Field	Description	Data Type	Reference Code	Comments
5	Source Ref. Number	Integer	OBJREF	
6	Seismic Record Identifier	Text		
7	Acq. Line Reference Number	Integer	ACQREF	
8	Preplot Line Reference Number	Integer	PREPLOTREF	
9	Acq. Point Number	Variant		Format as defined in H2,0,1,0
10	Preplot Point number	Variant		Format as defined in H2,0,1,0
11	Event Index Number	Integer		
12	Time	Variant		Format as defined for TRS listed in H2,1,2,0
13	Across Offset	Float		
14	Along Offset	Float		
15	Above Offset	Float		

T2,3,3,0: Source Fired Event: Seismic Record Id and Local Offset

Example Source Fired Event: Seismic Record Id and Local Offset

```
T2,3,3,0,31,00000000000982,1,1,982,982,1,0:15:44:56.70,0,0,0
T2,3,3,0,31,00000000000983,1,1,983,983,1,0:15:45:02.80,0,0,0
T2,3,3,0,31,00000000000984,1,1,984,984,1,0:15:45:08.80,0,0,0
T2,3,3,0,31,0000000000985,1,1,985,985,1,0:15:45:14.90,0,0,0
```

T2,3,3,1: Source Fired Event and Gun Firing Data

Field	Description	Data Type	Reference Code	Comments
5	Source Ref. Number	Integer	OBJREF	
6	Acq. Line Reference Number	Integer	ACQREF	
7	Preplot Line Reference Number	Integer	PREPLOTREF	
8	Acq. Point Number	Variant		Format as defined in H2,0,1,0
9	Preplot Point number	Variant		Format as defined in H2,0,1,0
10	Event Index Number	Integer		
11	Time	Variant		Format as defined for TRS listed in H2,1,2,0
12	Gun Number	Integer	GUNREF	
13	Gun Mode	Character		[A] uto [M] anual [S] pare [O] ff
14	Detect Mode	Character		[P] Peak [Z] Zero Cross
15	Auto Fire	Character		Y-Yes N-No

16	Static Offset	Float	
17	Gun Delay	Float	
18	Fire Time	Float	
19	Delta	Float	
20	Additional Data Fields	Additional Field List	The number of items must equal that given in the H2,3,0,0 record

Fields 12 onwards may be repeated.

Any gun not listed in these records is considered to be inactive for the event.

Example Source Fired Event and Gun Firing Data

T2,3,3,1,31,1,1,958,958,1,0:15:42:30.80,1,A,P,N,0,0,0,0,, 2,A,P,N,0,0,0,0,, 3,A,P,N,0,0,0,0,, 4,A,P,N,0,0,0,0, T2,3,3,1,31,1,1,958,958,1,0:15:42:30.80,5,A,P,N,0,0,0,0,, 6,A,P,N,0,0,0,0,, 7,A,P,N,0,0,0,0,, 8,A,P,N,0,0,0,0,

T2,5,4,0: Observation Data

Field	Description	Data Type	Reference Code	Comments
5	Observation Identifier	Integer	OBSID	
6	Observation	Variant		Format as defined in H2,5,4,0 field 16 (Measurement Unit Code)
7	Time of Observation	Variant		Format as defined for TRS listed in H2,5,4,0
8	Additional Data Fields	Additional Field List		The number of items must equal that given in the H2,5,4,0 and T2,5,4,2 records

Fields 5 onwards may be repeated. If the time of observation is the same as the first observation recorded then this field may be left blank.

Example Observation Data Block

T2,5,4,0,71,00054.7559,0:15:42:47.40,,72,00089.3652,,,73,00131.7773,,,84,00054.6973,,T2,5,4,0,85,00067.1484,0:15:42:47.40,,86,00140.4199,,,96,00058.9160,,,97,00126.4941,,T2,5,4,0,98,00098.6719,0:15:42:47.40,,99,00066.7578,,,101,00066.6016,,,102,00066.6113,,T2,5,4,0,103,00123.5547,0:15:42:47.40,,104,00100.9961,,,112,00137.1680,,,113,00091.4160,,T2,5,4,0,114,00070.3418,0:15:42:47.40,,115,00065.0195,,,116,00067.1289,,,117,00139.1309,,T2,5,4,0,118,00083.8770,0:15:42:47.40,,119,00054.7070,,,120,00064.5898,,,130,00089.2090,,

T2,5,4,1: Observation Parameters Update

Field	Description	Data Type	Reference Code	Comments
5	Observation Identifier	Integer	OBSID	
6	Variable (C-O)	Float		Blank if n/a
7	Scale Factor (C/O)	Float		Blank if n/a
8	Propagation Speed	Float		Blank if n/a
9	Time of Observation	Variant		Format as defined for TRS listed in H2,5,4,0

Fields 5 onwards may be repeated.

T2,5,4,2: Online Observation Definition

Version history		
Item revised	Version 1.0	Version 1.1
28	Additional Data Fields	Record Extension Field Definition

Field	Description	Data Type	Reference Code	Comments
5-25	As per Header record H2,5,4,0			
26	Time of Definition	Variant		Format as per TRS defined in field 17
27	Number of Record Extension Fields Recorded Per Observation Record	Integer		
28	Record Extension Field Definition	Record Extension Field text string		Optional Standard Record Extension - see Table 5

This record allows systems which produce the P2/11 file during survey operations to handle the case where an observation is defined during survey operations Refer to Table 19 for format-defined field extension identifiers (input to Field 28).

T2,5,5,0: Position Data

Field	Description	Data Type	Reference Code	Comments
5	Observation Identifier	Integer	OBSID	
6	Coordinate 1	Variant		Format as defined for CRS in HC,1,6,1
7	Coordinate 2	Variant		Format as defined for CRS in HC,1,6,1
8	Coordinate 3	Variant		Format as defined for CRS in HC,1,6,1
9	Error Ellipse Semi-Major Axis	Float		Optional for external positions Mandatory for internal positions
10	Error Ellipse Semi-Minor Axis	Float		Optional for external positions Mandatory for internal positions
11	Error Ellipse Azimuth	Float		Optional for external positions Mandatory for internal positions
12	Satellites Used	Integer List		May be blank if this position is not computed via satellite
13	Reference Stations Used	Integer List	REFSTN	May be blank if this system doesn't use reference station
14	Position Calculation Mode	Integer		May be blank if not known or relevant. The value of this field is dependent on the data source.
15	Time of Observation	Variant		Format as defined for TRS listed in H2,5,5,0
16	Additional Data Fields	Additional Field List		The number of items must equal that given in the H2,5,5,0 record

Example Position Data Block

```
T2,5,5,0,834,58.527575000,0.397790000,75,3.1,2.3,3.5,8&27&4&19&13&10&24,,1,0:15:43:43.00,
T2,5,5,0,835,58.527571667,0.397800000,73,3.1,2.3,3.5,27&8&13&4&10&24&19,,1,0:15:43:43.00,
T2,5,5,0,836,58.527573333,0.397785000,75,3.1,2.3,3.5,4&8&19&27&13&10&24,,1,0:15:43:43.00,
```

T2,6,5,1: GNSS Receiver Raw Data

Field	Description	Data Type	Reference Code	Comments
5	System Reference Number	Integer	SATSYSREF	
6	Receiver Number	Integer	RXREF	
7	Raw Data Reference	Integer		
8	Time of Receipt	Variant		
9	Data	Text		

Example GNSS Receiver Raw Data Block

T2,6,5,1,1,29,1,989860814.0,	10 11 3 0 0	0.0000000 0	9G18G25G 5G15G30G2	26G29G21G 2
T2,6,5,1,1,29,1,989860814.0,	-11411555.91847	-8845534.2934	4 23225917.3054	23225913.2854
T2,6,5,1,1,29,1,989860814.0,	43.2504	25.2504		
T2,6,5,1,1,29,1,989860814.0,	-4044052.56946	-3103683.6894	3 24376409.8754	24376410.0394
T2,6,5,1,1,29,1,989860814.0,	40.0004	21.2504		
T2,6,5,1,1,29,1,989860814.0,	-14707669.90848	-11413596.0204	5 22333181.3834	22333177.2464
T2,6,5,1,1,29,1,989860814.0,	48.0004	34.0004		
T2,6,5,1,1,29,1,989860814.0,	-22819897.53048	-17735912.3964	6 20952874.5704	20952870.3244
T2,6,5,1,1,29,1,989860814.0,	49.7504	39.0004		
T2,6,5,1,1,29,1,989860814.0,	-4710557.73647	-3624522.5844	3 24065907.1564	24065905.2504
T2,6,5,1,1,29,1,989860814.0,	42.0004	22.2504		
T2,6,5,1,1,29,1,989860814.0,	-24556332.70948	-18718242.3304	6 20666692.3984	20666688.6254
T2,6,5,1,1,29,1,989860814.0,	51.7504	38.2504		
T2,6,5,1,1,29,1,989860814.0,	-24951429.77448	-19399995.1584	6 20421166.3444	20421163.1374
T2,6,5,1,1,29,1,989860814.0,	51.0004	41.5004		
T2,6,5,1,1,29,1,989860814.0,	-13390876.84547	-10341678.2054	4 23211443.9454	23211439.1094
T2,6,5,1,1,29,1,989860814.0,	44.7504	29.5004		
T2,6,5,1,1,29,1,989860814.0,	-8362129.80246	-6247468.1424	4 23821378.7114	23821374.7344
T2,6,5,1,1,29,1,989860814.0,	41.5004	24.0004		

T2,6,6,2: Correction Source Raw Data

Field	Description	Data Type	Reference Code	Comments
5	Correction Source Identifier	Integer	CSREF	
6	Correction Source Raw Data Reference	Integer		
7	Time of Receipt	Variant		
8	Data	Text		

Example Correction Source Raw Data Block

```
T2, 6, 6, 2, 30, 1, 989860814.0, 3F436652D35A64H23B3453466B454B1A2B3C4D567890
T2, 6, 6, 2, 30, 1, 989860815.0, 3453545F452D35A64H23B3456B454B4531A2B3C4D567890
T2, 6, 6, 2, 30, 1, 989860816.0, 3F452643D35A64H23B3456B454B1A2B3C4D567890
T2, 6, 6, 2, 30, 1, 989860817.0, 32D3365A64H23B3456367788B454B1A243544353C4D567890
T2, 6, 6, 2, 30, 1, 989860818.0, 3F336aa452D35A64H23B3456B454B1A2B3C4D567890
```

Appendix A: Tables of Fixed Values

A.1. Common Header Reference Codes

Version history		
Item revised	Version 1.0	Version 1.1
Code		AUXGROUPREF
Code		PSATTTYPEREF
Code Name (OBJREF[RX])	Seismic Receiver Reference Number	Seismic Receiver Type Reference number
Code Type (GROUPREF)	Integer	Variant (moved from Appendix A.2)

Code	Name	Туре	Defined in/First Reference To*	Range
DATATYPEREF	Data Type Code	Fixed	Table 4	See Table
FORMATREF	Format Code	Fixed	Table 6	See Table
UNITREF	Unit Code	Counter	HC,1,1,0	1 onwards
TRSREF	TRS Number	Counter	HC,1,2,0	1 onwards
TIMEREF	Time Reference Code	Fixed	Table 8	See Table
CRSREF	CRS Number	Counter	HC,1,3,0	1 onwards
CRSTYPEREF	CRS Type Code	Fixed	Table 10	See Table
CSTYPEREF	Coordinate System Type Code	Fixed	Table 11	See Table
COTRANSREF	Coordinate Transformation Number	Counter	HC,1,7,0	1 onwards
PRODSYSREF	Recording System Reference Number	Counter	HC,2,1,0	1 onwards
PSATTREF	Production System Attribute Code	Fixed with extension	Table 12	See Table
AUXGROUPREF	Auxiliary Group Number	Counter	HC,2,1,2	1 onwards (Code added in version 1.1)
PSATTTYPEREF	Production System Attribute Record Type Number	Counter	HC,2,1,3	1 onwards (Code added in version 1.1)
AUXREF	Auxiliary Channel Number	Counter	HC,2,1,2	1 onwards
OBJREF	General Object Reference Number	Counter	HC,2,3,0	1 onwards

OBJREF[RX]	Seismic Receiver Type Reference Number	Counter	HC,2,2,0	Is a subset of OBJREF (Code name modified in version 1.1)
OBJNAME	Object Short Name	Text	HC,2,2,0 HC,2,3,0	(User defined)
OBJTYPE	Object Type	Text. Fixed with extension	Table 14	See Table
OBJTYPEREF	Object Type Code	Fixed with extension	Table 14	See Table
OBJATTREF	Object Attribute Reference Code	Fixed with extension	Table 15	See Table
RXATTREF	Receiver Attribute Reference Code	Fixed	Table 13	See Table
RXATTREF	Receiver Attribute Reference Code	Fixed	Table 13	See Table
GROUPREF	Receiver Group Identifier	Variant	H2,2,2,0	Unique within the same streamer (Code type modified in version 1.1)
PPTYPEATTREF	Preplot Type Attribute Identified	Integer	H2,0,1,1	1 onwards (Code added in version 1.1)
PREPLOTTYPEREF	Preplot Type Reference Number	Counter	H2,0,1,0	1 onwards

Table 21: Common Header Reference Codes

 * 'First Reference To' applies to codes that are counters

A.2. P2 Specific Reference Codes

Version history					
Item revised	Version 1.0	Version 1.1			
Code (GROUPREF)		(Moved to Appendix A.1)			
Code	RECSYSREF	Deprecated			

Code	Name	Туре	Defined in/First reference to*	Range
ACQREF	Acq. Line Reference Number	Counter	H2,0,0,1	1 onwards
PREPLOTREF	Preplot Line Reference Number	Counter	H2,0,2,0	1 onwards
PPSECREF	Preplot Line Segment Reference Number	Counter	H2,0,2,1 H2,0,2,2 H2,0,2,3 H2,0,2,4	1 onwards
VELREF	Velocity Profile Number	Counter	H2,0,4,0	1 onwards
TIDALREF	Tidal Port Number	Counter	H2,0,5,0	1 onwards
OBJREF[NODE]	Node Number	Counter	H2,5,2,0 or H2,5,3,0	Is a subset of OBJREF
OBJNAME	Short Object Name	Text	H2,5,2,0 H2,5,3,0	
STRMCOMPREF	Streamer Component Identifier	Counter	H2,2,0,0	1 onwards
GROUPREF				(Moved to Appendix A.1)
GUNREF	Gun Reference Number	Counter	H2,3,1,0	1 onwards
OBSTYPEREF	Observation Type	Fixed with extension	H2,5,0,0	See Table 18
OBSID	Observation Number	Counter	H2,5,4,0	1 onwards
OBSDATATYPE	Observation Source Type	Integer	H2,5,4,0	1 or 2
SYSREF	Position System Identifier	Counter	H2,5,1,0	1 onwards
SATSYSREF	System Reference Number	Counter	H2,6,0,0	1 onwards
REFSTN	Reference Station Number	Counter	H2,6,1,0	
RXREF	Receiver Number	Counter	H2,6,2,0	1 onwards
CSREF	Correction Source Identifier	Counter	H2,6,6,0	1 onwards
RECSYSREF				(Code deprecated in version 1.1)

Table 22: P2 Specific Fixed Values

 * 'First Reference To' applies to codes that are counters.

Registered Office

Level 5 209–215 Blackfriars Rd London SE1 8NL United Kingdom T +44 (0)20 3763 9700 F +44 (0)20 3763 9701 reception@iogp.org

T +32 (0)2 566 9150

F +32 [0]2 566 9159

www.iogp.org

Brussels Office

Bd du Souverain,165 4th Floor B-1160 Brussels Belgium

> The P Formats for the exchange of positioning data are recommended by the International Association of Oil & Gas Producers (IOGP) for general use in the upstream oil and gas industry. They supersede earlier UKOOA P1, P2 and P6 formats. Parallel discussions with the Society of Exploration Geophysicists (SEG) covered deprecation of their SEG-P1 format and recognition of the revised OGP P1/11 format as its replacement.

These formats have been developed in response to ever evolving acquisition and processing technologies. OGP P2/11 replaces UK00A P2/94.